Evaluation of biofilm carrier colonisation in a deammonification moving-bed biofilm reactor.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Technology Pub Date : 2025-03-18 DOI:10.1080/09593330.2025.2475522
Mor Shental-Isaacs, Guy Horev, Carlos G Dosoretz
{"title":"Evaluation of biofilm carrier colonisation in a deammonification moving-bed biofilm reactor.","authors":"Mor Shental-Isaacs, Guy Horev, Carlos G Dosoretz","doi":"10.1080/09593330.2025.2475522","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on the evaluation and characterisation of carrier colonisation of a deammonification moving-bed biofilm reactor (dMBBR) at a low carrier-inoculation ratio (≤5%v/v), applying multiple methodologies. The dMBBR (5 L working volume) was filled with Aqwise carriers (50%v/v filling ratio) and fed with synthetic feedstock. Carrier colonisation was differentially tracked using grey colour for new carriers and white colour for pre-colonised seed carriers. The reactor operated for 190 days at a nitrogen loading of 125-140 gN/m<sup>3</sup>/d. Multivariant heatmap analysis of the process parameters indicated stable deammonification performance from day 85 onwards albeit some occasional malfunctions occurred, with NH<sub>4</sub><sup>+</sup> and total nitrogen removal rates amounting to 85% and 61%, respectively. Biofilm development on new carriers, evaluated by bulk density measurements via pycnometry, proved to be a reliable, simple, and non-destructive methodology. Anammox of genus <i>Candidatus Brocadia</i> and ammonia oxidising bacteria of genus <i>Nitrosomonas</i> were well established on the new carriers, in line with theoretical and empirical specific activity tests. This multi-parameter evaluation provides a broad insight into deammonification biomass development on the carriers and may assist in shortening the start-up period of dMBBRs.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2475522","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focused on the evaluation and characterisation of carrier colonisation of a deammonification moving-bed biofilm reactor (dMBBR) at a low carrier-inoculation ratio (≤5%v/v), applying multiple methodologies. The dMBBR (5 L working volume) was filled with Aqwise carriers (50%v/v filling ratio) and fed with synthetic feedstock. Carrier colonisation was differentially tracked using grey colour for new carriers and white colour for pre-colonised seed carriers. The reactor operated for 190 days at a nitrogen loading of 125-140 gN/m3/d. Multivariant heatmap analysis of the process parameters indicated stable deammonification performance from day 85 onwards albeit some occasional malfunctions occurred, with NH4+ and total nitrogen removal rates amounting to 85% and 61%, respectively. Biofilm development on new carriers, evaluated by bulk density measurements via pycnometry, proved to be a reliable, simple, and non-destructive methodology. Anammox of genus Candidatus Brocadia and ammonia oxidising bacteria of genus Nitrosomonas were well established on the new carriers, in line with theoretical and empirical specific activity tests. This multi-parameter evaluation provides a broad insight into deammonification biomass development on the carriers and may assist in shortening the start-up period of dMBBRs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
期刊最新文献
Unveiling the adsorption mechanisms and key influencing factors of cyclic acetals on powdered activated carbon. Evaluation of biofilm carrier colonisation in a deammonification moving-bed biofilm reactor. Effects of tea polyphenols disinfectant on microbial communities and potential pathogenic bacteria in water. Freshwater algal species consortia exhibit optimal biomass and biodiesel production under calcium chloride and magnesium sulphate stress. Functionalization of environmental-friendly biosorbent for high-performance removal of uranium from waste solution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1