Correlations of blood and brain NMR metabolomics with Alzheimer's disease mouse models.

IF 5.8 1区 医学 Q1 PSYCHIATRY Translational Psychiatry Pub Date : 2025-03-18 DOI:10.1038/s41398-025-03293-8
Franz Knörnschild, Ella J Zhang, Rajshree Ghosh Biswas, Marta Kobus, Jiashang Chen, Jonathan X Zhou, Angela Rao, Joseph Sun, Xiaoyu Wang, Wei Li, Isabella H Muti, Piet Habbel, Johannes Nowak, Zhongcong Xie, Yiying Zhang, Leo L Cheng
{"title":"Correlations of blood and brain NMR metabolomics with Alzheimer's disease mouse models.","authors":"Franz Knörnschild, Ella J Zhang, Rajshree Ghosh Biswas, Marta Kobus, Jiashang Chen, Jonathan X Zhou, Angela Rao, Joseph Sun, Xiaoyu Wang, Wei Li, Isabella H Muti, Piet Habbel, Johannes Nowak, Zhongcong Xie, Yiying Zhang, Leo L Cheng","doi":"10.1038/s41398-025-03293-8","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder, impacting millions of geriatric patients globally. Unfortunately, AD can only be diagnosed post-mortem, through the analysis of autopsied brain tissue in human patients. This renders early detection and countering disease progression difficult. As AD progresses, the metabolomic profile of the brain and other organs can change. These alterations can be detected in peripheral systems (i.e., blood) such that biomarkers of the disease can be identified and monitored with minimal invasion. In this work, High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is used to correlate biochemical changes in mouse brain tissues, from the cortex and hippocampus, with blood plasma. Ten micrograms of each brain tissue and ten microliters of blood plasma were obtained from 5XFAD Tg AD mice models (n = 15, 8 female, 7 male) and female C57/BL6 wild-type mice (n = 8). Spectral regions-of-interest (ROI, n = 51) were identified, and 121 potential metabolites were assigned using the Human Metabolome Database and tabulated according to their trends (increase/decrease, false discovery rate significance). This work identified several metabolites that impact glucose oxidation (lactic acid, pyruvate, glucose-6-phosphate), allude to oxidative stress resulting in brain dysfunction (L-cysteine, galactitol, propionic acid), as well as those interacting with other neural pathways (taurine, dimethylamine). This work also suggests correlated metabolomic changes within blood plasma, proposing an avenue for biomarker detection, ideally leading to improved patient diagnosis and prognosis in the future.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"87"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03293-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder, impacting millions of geriatric patients globally. Unfortunately, AD can only be diagnosed post-mortem, through the analysis of autopsied brain tissue in human patients. This renders early detection and countering disease progression difficult. As AD progresses, the metabolomic profile of the brain and other organs can change. These alterations can be detected in peripheral systems (i.e., blood) such that biomarkers of the disease can be identified and monitored with minimal invasion. In this work, High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is used to correlate biochemical changes in mouse brain tissues, from the cortex and hippocampus, with blood plasma. Ten micrograms of each brain tissue and ten microliters of blood plasma were obtained from 5XFAD Tg AD mice models (n = 15, 8 female, 7 male) and female C57/BL6 wild-type mice (n = 8). Spectral regions-of-interest (ROI, n = 51) were identified, and 121 potential metabolites were assigned using the Human Metabolome Database and tabulated according to their trends (increase/decrease, false discovery rate significance). This work identified several metabolites that impact glucose oxidation (lactic acid, pyruvate, glucose-6-phosphate), allude to oxidative stress resulting in brain dysfunction (L-cysteine, galactitol, propionic acid), as well as those interacting with other neural pathways (taurine, dimethylamine). This work also suggests correlated metabolomic changes within blood plasma, proposing an avenue for biomarker detection, ideally leading to improved patient diagnosis and prognosis in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
期刊最新文献
The relationship between hair cortisol and trauma sequelae in motor vehicle crash survivors: the role of childhood trauma experiences. Correlations of blood and brain NMR metabolomics with Alzheimer's disease mouse models. Chemogenetic induction of CA1 hyperexcitability triggers indistinguishable autistic traits in asymptomatic mice differing in Ambra1 expression and sex. Investigating the shared genetic architecture between schizophrenia and sex hormone traits. Over-integration of visual network in major depressive disorder and its association with gene expression profiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1