Franz Knörnschild, Ella J Zhang, Rajshree Ghosh Biswas, Marta Kobus, Jiashang Chen, Jonathan X Zhou, Angela Rao, Joseph Sun, Xiaoyu Wang, Wei Li, Isabella H Muti, Piet Habbel, Johannes Nowak, Zhongcong Xie, Yiying Zhang, Leo L Cheng
{"title":"Correlations of blood and brain NMR metabolomics with Alzheimer's disease mouse models.","authors":"Franz Knörnschild, Ella J Zhang, Rajshree Ghosh Biswas, Marta Kobus, Jiashang Chen, Jonathan X Zhou, Angela Rao, Joseph Sun, Xiaoyu Wang, Wei Li, Isabella H Muti, Piet Habbel, Johannes Nowak, Zhongcong Xie, Yiying Zhang, Leo L Cheng","doi":"10.1038/s41398-025-03293-8","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder, impacting millions of geriatric patients globally. Unfortunately, AD can only be diagnosed post-mortem, through the analysis of autopsied brain tissue in human patients. This renders early detection and countering disease progression difficult. As AD progresses, the metabolomic profile of the brain and other organs can change. These alterations can be detected in peripheral systems (i.e., blood) such that biomarkers of the disease can be identified and monitored with minimal invasion. In this work, High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is used to correlate biochemical changes in mouse brain tissues, from the cortex and hippocampus, with blood plasma. Ten micrograms of each brain tissue and ten microliters of blood plasma were obtained from 5XFAD Tg AD mice models (n = 15, 8 female, 7 male) and female C57/BL6 wild-type mice (n = 8). Spectral regions-of-interest (ROI, n = 51) were identified, and 121 potential metabolites were assigned using the Human Metabolome Database and tabulated according to their trends (increase/decrease, false discovery rate significance). This work identified several metabolites that impact glucose oxidation (lactic acid, pyruvate, glucose-6-phosphate), allude to oxidative stress resulting in brain dysfunction (L-cysteine, galactitol, propionic acid), as well as those interacting with other neural pathways (taurine, dimethylamine). This work also suggests correlated metabolomic changes within blood plasma, proposing an avenue for biomarker detection, ideally leading to improved patient diagnosis and prognosis in the future.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"87"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03293-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder, impacting millions of geriatric patients globally. Unfortunately, AD can only be diagnosed post-mortem, through the analysis of autopsied brain tissue in human patients. This renders early detection and countering disease progression difficult. As AD progresses, the metabolomic profile of the brain and other organs can change. These alterations can be detected in peripheral systems (i.e., blood) such that biomarkers of the disease can be identified and monitored with minimal invasion. In this work, High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is used to correlate biochemical changes in mouse brain tissues, from the cortex and hippocampus, with blood plasma. Ten micrograms of each brain tissue and ten microliters of blood plasma were obtained from 5XFAD Tg AD mice models (n = 15, 8 female, 7 male) and female C57/BL6 wild-type mice (n = 8). Spectral regions-of-interest (ROI, n = 51) were identified, and 121 potential metabolites were assigned using the Human Metabolome Database and tabulated according to their trends (increase/decrease, false discovery rate significance). This work identified several metabolites that impact glucose oxidation (lactic acid, pyruvate, glucose-6-phosphate), allude to oxidative stress resulting in brain dysfunction (L-cysteine, galactitol, propionic acid), as well as those interacting with other neural pathways (taurine, dimethylamine). This work also suggests correlated metabolomic changes within blood plasma, proposing an avenue for biomarker detection, ideally leading to improved patient diagnosis and prognosis in the future.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.