Packing fraction related transport in disordered quantum dot arrays

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2025-03-18 DOI:10.1063/5.0250705
K. Eshraghi, S. Natani, P. Bandaru
{"title":"Packing fraction related transport in disordered quantum dot arrays","authors":"K. Eshraghi, S. Natani, P. Bandaru","doi":"10.1063/5.0250705","DOIUrl":null,"url":null,"abstract":"Models to describe electrical conduction in quantum dot (QD) constituted films often overlook the effects of geometric disorder. We address related issues by examining the influence of the QD packing fraction (PF) on the charge transport and transmission in QD arrays. Using transfer matrix based algorithms and Monte Carlo simulations, we quantify the transmission across disordered QD assemblies. Our results indicate a critical packing fraction (PFc) of ∼ 0.64, marking a transition from a non-conducting to a conducting state, aligning well with experimental observations and analytical predictions. This study enhances the understanding of transport in QD arrays, with implications for designing efficient electronic devices based on disordered nanoscale systems.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"25 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250705","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Models to describe electrical conduction in quantum dot (QD) constituted films often overlook the effects of geometric disorder. We address related issues by examining the influence of the QD packing fraction (PF) on the charge transport and transmission in QD arrays. Using transfer matrix based algorithms and Monte Carlo simulations, we quantify the transmission across disordered QD assemblies. Our results indicate a critical packing fraction (PFc) of ∼ 0.64, marking a transition from a non-conducting to a conducting state, aligning well with experimental observations and analytical predictions. This study enhances the understanding of transport in QD arrays, with implications for designing efficient electronic devices based on disordered nanoscale systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
描述量子点(QD)构成的薄膜中电导的模型通常会忽略几何无序的影响。我们通过研究量子点堆积分数 (PF) 对量子点阵列中电荷传输和透射的影响来解决相关问题。利用基于传输矩阵的算法和蒙特卡罗模拟,我们对无序 QD 组件的传输进行了量化。我们的结果表明,临界堆积分数(PFc)为 0.64,标志着从非传导状态向传导状态的过渡,与实验观察和分析预测结果十分吻合。这项研究加深了人们对 QD 阵列传输的理解,对设计基于无序纳米级系统的高效电子器件具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Tumor-suppressive function and mechanism of miR-873-5p in glioblastoma: evidence based on bioinformatics analysis and experimental validation.
IF 5.2 3区 医学Aging-UsPub Date : 2023-06-28 DOI: 10.18632/aging.204800
Xiaobin Zhang, Fangkun Jing, Chen Guo, Xinning Li, Jianan Li, Guobiao Liang
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Enhanced Curie temperature in atomically thin perpendicular magnetic anisotropic oxide film through interfacial engineering Ultra-long-range Bessel beams via leaky waves with mitigated open stopband Single-shot Fourier ptychography using polarization-encoded illumination Decoding the effect of defect and domain on piezoelectric properties of K0.5Na0.5NbO3-based single crystals Morphological and strain engineering of SiGe cladded channels for stacked nanowire transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1