Isidoro Cobo, Jessica Murillo, Mohnish Alishala, Stephen Calderon, Roxana Coras, Benjamin Hemming, Faith Inkum, Fiorella Rosas, Riku Takei, Nathan Spann, Thomas A. Prohaska, Paulo V.G. Alabarse, Se-Jin Jeong, Christian K. Nickl, Anyan Cheng, Benjamin Li, Andrea Vogel, Thomas Weichhart, José J. Fuster, Thomas Le, Christopher K. Glass
{"title":"Particle uptake by macrophages triggers bifurcated transcriptional pathways that differentially regulate inflammation and lysosomal gene expression","authors":"Isidoro Cobo, Jessica Murillo, Mohnish Alishala, Stephen Calderon, Roxana Coras, Benjamin Hemming, Faith Inkum, Fiorella Rosas, Riku Takei, Nathan Spann, Thomas A. Prohaska, Paulo V.G. Alabarse, Se-Jin Jeong, Christian K. Nickl, Anyan Cheng, Benjamin Li, Andrea Vogel, Thomas Weichhart, José J. Fuster, Thomas Le, Christopher K. Glass","doi":"10.1016/j.immuni.2025.02.023","DOIUrl":null,"url":null,"abstract":"Exposure to particles is a driver of several inflammatory diseases. Here, we investigated macrophage responses to monosodium urate crystals, calcium pyrophosphate crystals, aluminum salts, and silica nanoparticles. While each particle induced a distinct gene expression pattern, we identified a common inflammatory signature and acute activation of lysosomal acidification genes. Using monosodium urate crystals as a model, we demonstrated that this lysosomal gene program is regulated by a 5′-prime-AMP-activated protein kinase (AMPK)-dependent transcriptional network, including TFEB, TFE3, and the epigenetic regulators DNA methyl transferase 3a (DNMT3A) and DOT1L. This lysosomal acidification program operates in parallel with, but largely independently of, a JNK-AP-1-dependent network driving crystal-induced chemokine and cytokine expression. These findings reveal a bifurcation in pathways governing inflammatory and lysosomal responses, offering insights for treating particle-associated diseases.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"183 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2025.02.023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to particles is a driver of several inflammatory diseases. Here, we investigated macrophage responses to monosodium urate crystals, calcium pyrophosphate crystals, aluminum salts, and silica nanoparticles. While each particle induced a distinct gene expression pattern, we identified a common inflammatory signature and acute activation of lysosomal acidification genes. Using monosodium urate crystals as a model, we demonstrated that this lysosomal gene program is regulated by a 5′-prime-AMP-activated protein kinase (AMPK)-dependent transcriptional network, including TFEB, TFE3, and the epigenetic regulators DNA methyl transferase 3a (DNMT3A) and DOT1L. This lysosomal acidification program operates in parallel with, but largely independently of, a JNK-AP-1-dependent network driving crystal-induced chemokine and cytokine expression. These findings reveal a bifurcation in pathways governing inflammatory and lysosomal responses, offering insights for treating particle-associated diseases.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.