Jade S. Duffy, Mark A. Bellgrove, Peter R. Murphy, Redmond G. O’Connell
{"title":"Disentangling sources of variability in decision-making","authors":"Jade S. Duffy, Mark A. Bellgrove, Peter R. Murphy, Redmond G. O’Connell","doi":"10.1038/s41583-025-00916-3","DOIUrl":null,"url":null,"abstract":"<p>Even the most highly-trained observers presented with identical choice-relevant stimuli will reliably exhibit substantial trial-to-trial variability in the timing and accuracy of their choices. Despite being a pervasive feature of choice behaviour and a prominent phenotype for numerous clinical disorders, the capability to disentangle the sources of such intra-individual variability (IIV) remains limited. In principle, computational models of decision-making offer a means of parsing and estimating these sources, but methodological limitations have prevented this potential from being fully realized in practice. In this Review, we first discuss current limitations of algorithmic models for understanding variability in decision-making behaviour. We then highlight recent advances in behavioural paradigm design, novel analyses of cross-trial behavioural and neural dynamics, and the development of neurally grounded computational models that are now making it possible to link distinct components of IIV to well-defined neural processes. Taken together, we demonstrate how these methods are opening up new avenues for systematically analysing the neural origins of IIV, paving the way for a more refined, holistic understanding of decision-making in health and disease.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"214 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00916-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Even the most highly-trained observers presented with identical choice-relevant stimuli will reliably exhibit substantial trial-to-trial variability in the timing and accuracy of their choices. Despite being a pervasive feature of choice behaviour and a prominent phenotype for numerous clinical disorders, the capability to disentangle the sources of such intra-individual variability (IIV) remains limited. In principle, computational models of decision-making offer a means of parsing and estimating these sources, but methodological limitations have prevented this potential from being fully realized in practice. In this Review, we first discuss current limitations of algorithmic models for understanding variability in decision-making behaviour. We then highlight recent advances in behavioural paradigm design, novel analyses of cross-trial behavioural and neural dynamics, and the development of neurally grounded computational models that are now making it possible to link distinct components of IIV to well-defined neural processes. Taken together, we demonstrate how these methods are opening up new avenues for systematically analysing the neural origins of IIV, paving the way for a more refined, holistic understanding of decision-making in health and disease.
期刊介绍:
Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.