Disentangling sources of variability in decision-making

IF 34.7 1区 医学 Q1 Neuroscience Nature Reviews Neuroscience Pub Date : 2025-03-20 DOI:10.1038/s41583-025-00916-3
Jade S. Duffy, Mark A. Bellgrove, Peter R. Murphy, Redmond G. O’Connell
{"title":"Disentangling sources of variability in decision-making","authors":"Jade S. Duffy, Mark A. Bellgrove, Peter R. Murphy, Redmond G. O’Connell","doi":"10.1038/s41583-025-00916-3","DOIUrl":null,"url":null,"abstract":"<p>Even the most highly-trained observers presented with identical choice-relevant stimuli will reliably exhibit substantial trial-to-trial variability in the timing and accuracy of their choices. Despite being a pervasive feature of choice behaviour and a prominent phenotype for numerous clinical disorders, the capability to disentangle the sources of such intra-individual variability (IIV) remains limited. In principle, computational models of decision-making offer a means of parsing and estimating these sources, but methodological limitations have prevented this potential from being fully realized in practice. In this Review, we first discuss current limitations of algorithmic models for understanding variability in decision-making behaviour. We then highlight recent advances in behavioural paradigm design, novel analyses of cross-trial behavioural and neural dynamics, and the development of neurally grounded computational models that are now making it possible to link distinct components of IIV to well-defined neural processes. Taken together, we demonstrate how these methods are opening up new avenues for systematically analysing the neural origins of IIV, paving the way for a more refined, holistic understanding of decision-making in health and disease.</p>","PeriodicalId":19082,"journal":{"name":"Nature Reviews Neuroscience","volume":"214 1","pages":""},"PeriodicalIF":34.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41583-025-00916-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Even the most highly-trained observers presented with identical choice-relevant stimuli will reliably exhibit substantial trial-to-trial variability in the timing and accuracy of their choices. Despite being a pervasive feature of choice behaviour and a prominent phenotype for numerous clinical disorders, the capability to disentangle the sources of such intra-individual variability (IIV) remains limited. In principle, computational models of decision-making offer a means of parsing and estimating these sources, but methodological limitations have prevented this potential from being fully realized in practice. In this Review, we first discuss current limitations of algorithmic models for understanding variability in decision-making behaviour. We then highlight recent advances in behavioural paradigm design, novel analyses of cross-trial behavioural and neural dynamics, and the development of neurally grounded computational models that are now making it possible to link distinct components of IIV to well-defined neural processes. Taken together, we demonstrate how these methods are opening up new avenues for systematically analysing the neural origins of IIV, paving the way for a more refined, holistic understanding of decision-making in health and disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
即使是最训练有素的观察者,在面对完全相同的选择相关刺激时,其选择的时间和准确性也会在试验与试验之间表现出很大的差异。尽管这是选择行为的一个普遍特征,也是许多临床疾病的一个突出表型,但人们对这种个体内变异性(IIV)的来源进行分析的能力仍然有限。原则上,决策计算模型提供了一种解析和估计这些来源的方法,但由于方法上的局限性,这一潜力在实践中未能得到充分发挥。在本综述中,我们首先讨论了算法模型目前在理解决策行为变异性方面的局限性。然后,我们将重点介绍行为范式设计、跨试验行为和神经动态新分析以及基于神经的计算模型开发等方面的最新进展,这些进展使得将 IIV 的不同组成部分与定义明确的神经过程联系起来成为可能。综上所述,我们展示了这些方法如何为系统分析 IIV 的神经起源开辟了新途径,从而为更精细、更全面地了解健康和疾病决策铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Reviews Neuroscience
Nature Reviews Neuroscience 医学-神经科学
CiteScore
35.00
自引率
0.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Neuroscience is a journal that is part of the Nature Reviews portfolio. It focuses on the multidisciplinary science of neuroscience, which aims to provide a complete understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience have made it possible to tackle longstanding neurobiological questions. However, the wealth of knowledge generated by these advancements has created a need for new tools to organize and communicate this information efficiently. Nature Reviews Neuroscience aims to fulfill this need by offering an authoritative, accessible, topical, and engaging resource for scientists interested in all aspects of neuroscience. The journal covers subjects such as cellular and molecular neuroscience, development of the nervous system, sensory and motor systems, behavior, regulatory systems, higher cognition and language, computational neuroscience, and disorders of the brain. Editorial decisions for the journal are made by a team of full-time professional editors who are PhD-level scientists.
期刊最新文献
Autonomic dysfunction in neurodegenerative disease How microglia contribute to the induction and maintenance of neuropathic pain Disentangling sources of variability in decision-making Musical neurodynamics Understanding Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1