{"title":"Hydrogen spillover in superwetting Ni/NiMoN Mott-Schottky heterostructures for boosting ampere-level hydrogen evolution","authors":"Hongru Hao, Yu Zhang, Zhe Wang, Shuo Shen, Lingling Xu, Zhe Lv, Yanqing Shen, Bo Wei","doi":"10.1063/5.0250821","DOIUrl":null,"url":null,"abstract":"Realizing fast electron transfer and rapid mass transport in high current density hydrogen evolution reaction (HER) is pivotal and imperative for water electrolysis. Here, we developed Ni/NiMoN Mott-Schottky heterostructures with unique superwettability that can enhance both electron and mass transfer, greatly reducing the energy demand for water splitting. Experimental and density functional theory demonstrate that in situ grown Ni nanoparticles can optimize the dissociation of water molecules from the surface and the adsorption of H*, facilitating the hydrogen spillover process on Ni/NiMoN. The optimized electrode delivers outstanding HER performance with an ultralow overpotential of −231.3 mV at −1000 mA cm−2 and maintains stable operation for 1000 h in alkaline media. An anion-exchange membrane electrolyzer using Ni/NiMoN as cathode can achieve 1000 mA cm−2 at a low voltage of 1.93 V with superstability. Our work paves an efficient way for constructing active and robust Mott-Schottky catalysts toward industrial-level hydrogen production.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250821","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Realizing fast electron transfer and rapid mass transport in high current density hydrogen evolution reaction (HER) is pivotal and imperative for water electrolysis. Here, we developed Ni/NiMoN Mott-Schottky heterostructures with unique superwettability that can enhance both electron and mass transfer, greatly reducing the energy demand for water splitting. Experimental and density functional theory demonstrate that in situ grown Ni nanoparticles can optimize the dissociation of water molecules from the surface and the adsorption of H*, facilitating the hydrogen spillover process on Ni/NiMoN. The optimized electrode delivers outstanding HER performance with an ultralow overpotential of −231.3 mV at −1000 mA cm−2 and maintains stable operation for 1000 h in alkaline media. An anion-exchange membrane electrolyzer using Ni/NiMoN as cathode can achieve 1000 mA cm−2 at a low voltage of 1.93 V with superstability. Our work paves an efficient way for constructing active and robust Mott-Schottky catalysts toward industrial-level hydrogen production.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.