Nectar peroxide: assessing variation among plant species, microbial tolerance, and effects on microbial community assembly

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2025-03-19 DOI:10.1111/nph.70050
Leta Landucci, Rachel L. Vannette
{"title":"Nectar peroxide: assessing variation among plant species, microbial tolerance, and effects on microbial community assembly","authors":"Leta Landucci, Rachel L. Vannette","doi":"10.1111/nph.70050","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>Many flowering plants offer energy-dense nectar to attract pollinators. While nectar is an essential attractant for pollinators, it also presents a liability (González-Teuber &amp; Heil, <span>2009</span>; Heil, <span>2011</span>). In addition to transporting pollen, pollinators act as vectors for dispersal-limited bacteria and fungi (Antonovics, <span>2005</span>; Herrera <i>et al</i>., <span>2009</span>; Harper <i>et al</i>., <span>2010</span>; Morris <i>et al</i>., <span>2020</span>). Some are plant pathogens and enter plants via floral tissues (González-Teuber &amp; Heil, <span>2009</span>; Sasu <i>et al</i>., <span>2010</span>; McArt <i>et al</i>., <span>2014</span>) while other microbes primarily reside within floral nectar, a chemically diverse habitat rich in nutrients (Pozo <i>et al</i>., <span>2014</span>; Chappell &amp; Fukami, <span>2018</span>; Adler <i>et al</i>., <span>2021</span>). Microbial growth can modify nectar characteristics including pH, floral scent, sugar ratios and total concentration, amino acids, volume, and temperature, which have been shown to alter pollinator foraging behavior (Herrera <i>et al</i>., <span>2009</span>; Álvarez-Pérez <i>et al</i>., <span>2012</span>; Pozo <i>et al</i>., <span>2014</span>; Aizenberg-Gershtein <i>et al</i>., <span>2015</span>; Schaeffer <i>et al</i>., <span>2017</span>; Rering <i>et al</i>., <span>2018</span>; Vannette &amp; Fukami, <span>2018</span>; de Vega <i>et al</i>., <span>2022</span>). However, many plant traits are hypothesized to protect nectar against potential disadvantageous changes induced by microbes (Adler, <span>2000</span>; Carter &amp; Thornburg, <span>2004</span>). High sugar concentrations reduce the number of bumble bee-vectored yeast species able to survive within the nectar of <i>Helleborus foetidus</i> (Herrera <i>et al</i>., <span>2009</span>). Undetermined chemical properties of nectar also reduce the growth of bacterial wilt in cucumber (Sasu <i>et al</i>., <span>2010</span>).</p>\n<p>These findings suggest the potential adaptive value of nectar antimicrobial mechanisms (Adler, <span>2000</span>; Herrera <i>et al</i>., <span>2009</span>). However, much remains to be understood about the identity of and the mechanisms by which floral nectar components are responsible for reducing microbial growth, and whether strategies are conserved across phylogenetically diverse plant species. Floral nectar is a complex solution of metabolites and molecules in which carbohydrates, vitamins, lipids, amino acids, proteins, inorganic ions, and secondary compounds like alkaloids and phenolics are diverse and, in some cases, abundant (Adler, <span>2000</span>; González-Teuber &amp; Heil, <span>2009</span>; Palmer-Young <i>et al</i>., <span>2019</span>). Alkaloids, proteins, and hydrogen peroxide inhibit microbial growth in nectar or nectar analogs (Aizenberg-Gershtein <i>et al</i>., <span>2015</span>; Schmitt <i>et al</i>., <span>2018</span>, <span>2021</span>; Koch <i>et al</i>., <span>2019</span>; Mueller <i>et al</i>., <span>2023</span>). These findings support the antimicrobial hypothesis, suggesting that specific nectar metabolites may be involved in adaptive defense and filtration of introduced microbes, significantly mediating microbial community composition and assembly in nectar (Adler, <span>2000</span>; Herrera <i>et al</i>., <span>2009</span>; Harper <i>et al</i>., <span>2010</span>; Pozo <i>et al</i>., <span>2014</span>; Stevenson <i>et al</i>., <span>2017</span>; Mueller <i>et al</i>., <span>2023</span>) yet how prevalent such mechanisms may be among plant species is poorly understood.</p>\n<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a reactive oxygen species that generates free hydroxyl radicals (<sup>•</sup>HO) in the presence of metal ions. Hydrogen peroxide generation has been proposed to be a major mechanism of antimicrobial defense (Carter &amp; Thornburg, <span>2004</span>; Carter <i>et al</i>., <span>2007</span>) in nectar, and more broadly across host–microbe systems (Allaoui <i>et al</i>., <span>2009</span>; Smirnoff &amp; Arnaud, <span>2019</span>; Miller <i>et al</i>., <span>2020</span>). Indeed, among potential antimicrobial compounds examined in laboratory studies, H<sub>2</sub>O<sub>2</sub> had the broadest inhibitory effect across many microbial species (Mueller <i>et al</i>., <span>2023</span>). In <i>Nicotiana</i>, nectarin proteins including superoxide dismutases and glucose oxidases (GOXs) drive a ‘nectar redox cycle’ that produces hydrogen peroxide and also provides a mechanism for detoxifying the free radicals generated, allowing plants to avoid self-toxicity (Carter &amp; Thornburg, <span>2000</span>, <span>2004</span>; González-Teuber &amp; Heil, <span>2009</span>; Harper <i>et al</i>., <span>2010</span>). Hydrogen peroxide has been detected in the nectar of many species of <i>Nicotiana</i>, ranging between 23.4 and 4000 μM but also at lower levels in <i>Cucurbita</i> and the legumes <i>Mucuna</i> and <i>Robinia</i> (Table 1) (Carter &amp; Thornburg, <span>2000</span>; Bezzi <i>et al</i>., <span>2010</span>; Liu <i>et al</i>., <span>2013</span>; Nocentini &amp; Guarnieri, <span>2014</span>; Silva <i>et al</i>., <span>2018</span>). However, whether antimicrobial levels of peroxide are also found broadly in the nectar of phylogenetically diverse plant species remains unknown. Hydrogen peroxide is also a common antimicrobial defense used by bees, found at high levels in bee-related habitats including the honey food stores of social Hymenoptera, produced via bee-secreted GOX proteins (Burgett, <span>1974</span>).</p>\n<div>\n<header><span>Table 1. </span>Peroxide concentrations measured in nectar from 58 different floral species spanning 25 families, both in this study and reported in the literature.</header>\n<div tabindex=\"0\">\n<table>\n<thead>\n<tr>\n<th>Family</th>\n<th>Species</th>\n<th>Range peroxide (μM)</th>\n<th>Mean peroxide (μM)</th>\n<th colspan=\"2\">Var</th>\n<th><i>N</i></th>\n<th>Assay method</th>\n<th>Study</th>\n<td></td>\n</tr>\n</thead>\n<tbody>\n<tr>\n<td><i>Acanthaceae</i></td>\n<td><i>Ruellia simplex</i></td>\n<td>300–3000</td>\n<td>1000</td>\n<td>–</td>\n<td rowspan=\"3\"></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Apocynaceae</i></td>\n<td><i>Amsonia tabernaemontana</i></td>\n<td>&lt; 15–60</td>\n<td>30</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Asparagaceae</i></td>\n<td><i>Hesperaloe parviflora</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"3\"><i>Asphodelaceae</i></td>\n<td><i>Aloe</i> sp. 1</td>\n<td>11–19</td>\n<td>15</td>\n<td>±4</td>\n<td rowspan=\"2\">SD</td>\n<td>3</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Aloe</i> sp. 2</td>\n<td>7–19</td>\n<td>12</td>\n<td>±5</td>\n<td>8</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Kniphofia</i></td>\n<td>15</td>\n<td>15</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"7\"><i>Bignoniaceae</i></td>\n<td><i>Chilopsis linearis</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td></td>\n<td rowspan=\"3\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cerinethe major</i></td>\n<td>24</td>\n<td>24</td>\n<td>–</td>\n<td>1</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cynoglossum grande</i></td>\n<td>30–150</td>\n<td>70</td>\n<td>–</td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Echium candicans</i></td>\n<td>3–7</td>\n<td>5</td>\n<td>±7</td>\n<td>SD</td>\n<td>2</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phacelia heterophylla</i></td>\n<td>200–300</td>\n<td>300</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phacelia hydrophylloides</i></td>\n<td>300</td>\n<td>300</td>\n<td>–</td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phacelia tanacetifolia</i></td>\n<td>16–57</td>\n<td>29</td>\n<td>±16</td>\n<td>SD</td>\n<td>5</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Brassicaceae</i></td>\n<td><i>Brassica oleracea</i></td>\n<td>32–131</td>\n<td>69</td>\n<td>±34</td>\n<td>SD</td>\n<td>3</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Erysimum capitatum</i></td>\n<td>&lt; 15–15</td>\n<td>5</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Caprifoliaceae</i></td>\n<td><i>Lonicera japonica</i></td>\n<td>300</td>\n<td>300</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cleomaceae</i></td>\n<td><i>Cleomella arborea</i></td>\n<td>7–43</td>\n<td>23</td>\n<td>±12</td>\n<td>SD</td>\n<td>12</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Crassulaceae</i></td>\n<td><i>Cotyledon orbiculata var. engleri</i></td>\n<td>7–134</td>\n<td>59</td>\n<td>±36</td>\n<td>SD</td>\n<td>20</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cucurbitaceae</i></td>\n<td><i>Cucurbita pepo</i></td>\n<td>3–296</td>\n<td>61</td>\n<td>±75.5</td>\n<td>SD</td>\n<td>16</td>\n<td>FOX method*</td>\n<td>Nocentini (<span>2015</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Ericaceae</i></td>\n<td><i>Arbutus unedo</i></td>\n<td>1500</td>\n<td>1500</td>\n<td>–</td>\n<td rowspan=\"2\">SD</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Arctostaphylos</i> sp.</td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"4\">Fabaceae</td>\n<td><i>Calliandra eriophylla</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Erythrina crista-galli</i></td>\n<td>15</td>\n<td>15</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Mucuna sempervirens</i></td>\n<td>–</td>\n<td>68.4</td>\n<td>±10.7</td>\n<td rowspan=\"2\">SD</td>\n<td>30</td>\n<td>Beyotime kit*</td>\n<td>Liu (<span>2013</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Robinia pseudoacacia</i></td>\n<td>–</td>\n<td>48.8</td>\n<td>±0.9</td>\n<td>3</td>\n<td>Carter, 2000 method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Francoaceae</i></td>\n<td><i>Melianthus comosus</i></td>\n<td>22</td>\n<td>22</td>\n<td>–</td>\n<td>SD</td>\n<td>1</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Grossulariaceae</i></td>\n<td><i>Ribes cereum</i></td>\n<td>&lt; 15–15</td>\n<td>5</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"3\"><i>Lamiaceae</i></td>\n<td><i>Mondardella odoratissima</i></td>\n<td>15–500</td>\n<td>200</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Salvia mellifera</i></td>\n<td>13.1</td>\n<td>13.1</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>1</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phlomis fruticosa</i></td>\n<td>&lt; 1</td>\n<td>ND (&lt; 1)</td>\n<td>–</td>\n<td>36</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"7\"><i>Onagraceae</i></td>\n<td><i>Clarkia unguiculata</i></td>\n<td>3–13</td>\n<td>7</td>\n<td>±4</td>\n<td>SD</td>\n<td>3</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Clarkia unguiculata</i></td>\n<td>&lt; 15–15</td>\n<td>5</td>\n<td>–</td>\n<td></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘silver’</i></td>\n<td>81–162</td>\n<td>103</td>\n<td>±25</td>\n<td rowspan=\"4\">SD</td>\n<td>10</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘canum’</i></td>\n<td>31–99</td>\n<td>72</td>\n<td>±26</td>\n<td>9</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘calistoga’</i></td>\n<td>22–97</td>\n<td>60</td>\n<td>±26</td>\n<td>9</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘everrit’</i></td>\n<td>25–54</td>\n<td>39</td>\n<td>±9</td>\n<td>10</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Oenothera elata</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Orobanchaceae</i></td>\n<td><i>Castilleja applegatei</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Castilleja miniata</i></td>\n<td>15–60</td>\n<td>30</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phrymaceae</i></td>\n<td><i>Diplacus aurantiacus</i></td>\n<td>&lt; 15–15</td>\n<td>10</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"6\"><i>Plantaginaceae</i></td>\n<td><i>Gambelia speciosa</i></td>\n<td>15</td>\n<td>15</td>\n<td>–</td>\n<td rowspan=\"2\">SD</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon centranthifolius</i></td>\n<td>9–21</td>\n<td>15</td>\n<td>±4</td>\n<td>10</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon gracilentus</i></td>\n<td>60–150</td>\n<td>100</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon heterophyllus</i></td>\n<td>4–24</td>\n<td>18</td>\n<td>±7</td>\n<td>SD</td>\n<td>8</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon heterophyllus</i></td>\n<td>30</td>\n<td>30</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon speciosus</i></td>\n<td>60–300</td>\n<td>190</td>\n<td>–</td>\n<td>7</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Polemoniaceae</i></td>\n<td><i>Ipomopsis aggregata</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phlox diffusa</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\">Ranunculaceae</td>\n<td><i>Aquilegia formosa</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Delphinium gracilentum</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\">Sapindaceae</td>\n<td><i>Aesculus californica</i></td>\n<td>7–14</td>\n<td>11</td>\n<td>±3</td>\n<td>SD</td>\n<td>4</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Aesculus californica</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td></td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Scrophulariaceae</i></td>\n<td><i>Russelia equisetiformis</i></td>\n<td>&lt; 15</td>\n<td>ND (&lt; 15)</td>\n<td>–</td>\n<td></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"11\"><i>Solanaceae</i></td>\n<td><i>Nicotiana alata</i></td>\n<td>–</td>\n<td>673</td>\n<td>±41.55</td>\n<td>SD</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana attenuata</i></td>\n<td>–</td>\n<td>116.2</td>\n<td>±17.3</td>\n<td rowspan=\"2\">SE</td>\n<td>7</td>\n<td>Luminal chemiluminescence method*</td>\n<td>Bezzi (<span>2010</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana attenuata</i></td>\n<td>–</td>\n<td>23.4</td>\n<td>±1.86</td>\n<td>7</td>\n<td>Amplex Red kit*</td>\n<td>Bezzi (<span>2010</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana benthamiana</i></td>\n<td>–</td>\n<td>288</td>\n<td>±50.5</td>\n<td rowspan=\"7\">SD</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana bonariensis</i></td>\n<td>–</td>\n<td>1840</td>\n<td>±8.90</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana clevelandii</i></td>\n<td>–</td>\n<td>869</td>\n<td>±136</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana glauca</i></td>\n<td>–</td>\n<td>407</td>\n<td>±184</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana langsdorffii</i></td>\n<td>–</td>\n<td>833</td>\n<td>±127</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana rustica</i></td>\n<td>–</td>\n<td>2140</td>\n<td>±582</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana sylvestris</i></td>\n<td>–</td>\n<td>543</td>\n<td>±50.5</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana</i> sp.</td>\n<td>&lt; 20–&gt; 4000</td>\n<td>771</td>\n<td>–</td>\n<td></td>\n<td>10</td>\n<td>Carter, 2000 method*</td>\n<td>Carter (2000)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Verbenaceae</i></td>\n<td><i>Lantana montevidensis</i></td>\n<td>30–1500</td>\n<td>600</td>\n<td>–</td>\n<td></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n</tbody>\n</table>\n</div>\n<div>\n<ul>\n<li> In the current study (45 species; 23 families), nectar samples from individual flowers were pooled to provide sufficient volume for either Amplex Red hydrogen peroxide or colorimetric test strip peroxide detection assays. SD and SE are abbreviations for standard deviation and standard error, respectively. For the Amplex Red assay, the limit of detection (LOD) is 50 nM, while our limit of quantification (LOQ) is 1 μM. Meanwhile, for the test strip assay, the LOD and LOQ are both 0.5 ppm (15 μM). Plant species that we sampled in the present study are colored blue, while those from the literature are indicated in gray. Additionally, species for which hydrogen peroxide (as opposed to peroxide, generally) was specifically measured are marked with an * in the ‘Assay Method’ column. </li>\n</ul>\n</div>\n<div></div>\n</div>\n<p>Concentrations of hydrogen peroxide at and above 2000 μM have been shown to reduce the growth of some common plant pathogens and yeasts, and bacteria isolated from nectar, pollinators, and the environment (Carter &amp; Thornburg, <span>2004</span>; Carter <i>et al</i>., <span>2007</span>; Mueller <i>et al</i>., <span>2023</span>). However, some microbes may tolerate high hydrogen peroxide concentrations (Herrera <i>et al</i>., <span>2009</span>; Álvarez-Pérez <i>et al</i>., <span>2012</span>; Vannette <i>et al</i>., 2013), including the nectar-specialist yeast <i>Metschnikowia reukaufii</i>. Catalases defend against oxidative stress by catalyzing the decomposition of hydrogen peroxide, detoxifying the environment and potentially making it more favorable for microbial growth (Vannette <i>et al</i>., 2013; de Vega <i>et al</i>., <span>2022</span>), for both the catalase producer and possibly co-occurring microbes (Mueller <i>et al</i>., <span>2023</span>). This has yet to be evaluated in the complex and dynamic nectar environment of living flowers, or at concentrations of hydrogen peroxide lower than 2000 μM. Investigating whether lower concentrations of hydrogen peroxide, which may be more commonly found in nectar, are also antimicrobial is necessary to assess the range of efficacy. Additionally, evaluating microbial taxa that are specialized to nectar and pollinator-associated environments and grow within a community, rather than as individual isolates, will be necessary to assess the range of conditions under which hydrogen peroxide may be an effective defense.</p>\n<p>Here, we assess the generality of hydrogen peroxide as a potential antimicrobial compound in floral nectar, including its inducibility and variation in microbial tolerance and compositional response to peroxide. In Aim 1, we surveyed 45 plant species and compiled previous values for 13 additional species from the literature, spanning 25 families to measure the range of nectar peroxide concentration and examine if plant phylogeny predicts hydrogen peroxide concentration. In Aim 2, we assessed if plant defense hormones methyl salicylate (Me-SA) and methyl jasmonate (Me-JA) induce hydrogen peroxide upregulation in nectar. Salicylic acid plays a central role in priming plant defenses against potential microbial pathogens, and we predicted that this could lead to increased nectar defenses and a possible mode of hydrogen peroxide regulation against microbes introduced into nectar. Methyl jasmonate, while typically associated with defense responses to herbivory and tissue damage, has also been found to mediate floral trait expression as well as plant traits that affect microbial growth (Pak <i>et al</i>., <span>2009</span>; Zuñiga <i>et al</i>., <span>2020</span>). Next, we assessed microbial responses to field-relevant concentrations of hydrogen peroxide. We approached this question from multiple perspectives. In Aim 3, we tested how yeast identity or isolation source, including bee, floral tissue, and nectar-associated habitats, impacts tolerance to hydrogen peroxide using <i>in vitro</i> assays. Next, in Aim 4, we examined how enzyme-increased hydrogen peroxide in the field shapes microbial community assembly in nectar. Finally, in Aim 5, we examined how individual vs community context determines microbial growth and effects on hydrogen peroxide concentration using lab assays. We predicted that differences we might observe could be mediated by microbial competition or the benefits of co-growth, where the detoxification of hydrogen peroxide by more tolerant microbes could facilitate improved growth of less resilient microbes.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70050","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Many flowering plants offer energy-dense nectar to attract pollinators. While nectar is an essential attractant for pollinators, it also presents a liability (González-Teuber & Heil, 2009; Heil, 2011). In addition to transporting pollen, pollinators act as vectors for dispersal-limited bacteria and fungi (Antonovics, 2005; Herrera et al., 2009; Harper et al., 2010; Morris et al., 2020). Some are plant pathogens and enter plants via floral tissues (González-Teuber & Heil, 2009; Sasu et al., 2010; McArt et al., 2014) while other microbes primarily reside within floral nectar, a chemically diverse habitat rich in nutrients (Pozo et al., 2014; Chappell & Fukami, 2018; Adler et al., 2021). Microbial growth can modify nectar characteristics including pH, floral scent, sugar ratios and total concentration, amino acids, volume, and temperature, which have been shown to alter pollinator foraging behavior (Herrera et al., 2009; Álvarez-Pérez et al., 2012; Pozo et al., 2014; Aizenberg-Gershtein et al., 2015; Schaeffer et al., 2017; Rering et al., 2018; Vannette & Fukami, 2018; de Vega et al., 2022). However, many plant traits are hypothesized to protect nectar against potential disadvantageous changes induced by microbes (Adler, 2000; Carter & Thornburg, 2004). High sugar concentrations reduce the number of bumble bee-vectored yeast species able to survive within the nectar of Helleborus foetidus (Herrera et al., 2009). Undetermined chemical properties of nectar also reduce the growth of bacterial wilt in cucumber (Sasu et al., 2010).

These findings suggest the potential adaptive value of nectar antimicrobial mechanisms (Adler, 2000; Herrera et al., 2009). However, much remains to be understood about the identity of and the mechanisms by which floral nectar components are responsible for reducing microbial growth, and whether strategies are conserved across phylogenetically diverse plant species. Floral nectar is a complex solution of metabolites and molecules in which carbohydrates, vitamins, lipids, amino acids, proteins, inorganic ions, and secondary compounds like alkaloids and phenolics are diverse and, in some cases, abundant (Adler, 2000; González-Teuber & Heil, 2009; Palmer-Young et al., 2019). Alkaloids, proteins, and hydrogen peroxide inhibit microbial growth in nectar or nectar analogs (Aizenberg-Gershtein et al., 2015; Schmitt et al., 2018, 2021; Koch et al., 2019; Mueller et al., 2023). These findings support the antimicrobial hypothesis, suggesting that specific nectar metabolites may be involved in adaptive defense and filtration of introduced microbes, significantly mediating microbial community composition and assembly in nectar (Adler, 2000; Herrera et al., 2009; Harper et al., 2010; Pozo et al., 2014; Stevenson et al., 2017; Mueller et al., 2023) yet how prevalent such mechanisms may be among plant species is poorly understood.

Hydrogen peroxide (H2O2) is a reactive oxygen species that generates free hydroxyl radicals (HO) in the presence of metal ions. Hydrogen peroxide generation has been proposed to be a major mechanism of antimicrobial defense (Carter & Thornburg, 2004; Carter et al., 2007) in nectar, and more broadly across host–microbe systems (Allaoui et al., 2009; Smirnoff & Arnaud, 2019; Miller et al., 2020). Indeed, among potential antimicrobial compounds examined in laboratory studies, H2O2 had the broadest inhibitory effect across many microbial species (Mueller et al., 2023). In Nicotiana, nectarin proteins including superoxide dismutases and glucose oxidases (GOXs) drive a ‘nectar redox cycle’ that produces hydrogen peroxide and also provides a mechanism for detoxifying the free radicals generated, allowing plants to avoid self-toxicity (Carter & Thornburg, 2000, 2004; González-Teuber & Heil, 2009; Harper et al., 2010). Hydrogen peroxide has been detected in the nectar of many species of Nicotiana, ranging between 23.4 and 4000 μM but also at lower levels in Cucurbita and the legumes Mucuna and Robinia (Table 1) (Carter & Thornburg, 2000; Bezzi et al., 2010; Liu et al., 2013; Nocentini & Guarnieri, 2014; Silva et al., 2018). However, whether antimicrobial levels of peroxide are also found broadly in the nectar of phylogenetically diverse plant species remains unknown. Hydrogen peroxide is also a common antimicrobial defense used by bees, found at high levels in bee-related habitats including the honey food stores of social Hymenoptera, produced via bee-secreted GOX proteins (Burgett, 1974).

Table 1. Peroxide concentrations measured in nectar from 58 different floral species spanning 25 families, both in this study and reported in the literature.
Family Species Range peroxide (μM) Mean peroxide (μM) Var N Assay method Study
Acanthaceae Ruellia simplex 300–3000 1000 4 Peroxide test strip Current
Apocynaceae Amsonia tabernaemontana < 15–60 30 3 Peroxide test strip Current
Asparagaceae Hesperaloe parviflora < 15 ND (< 15) 4 Peroxide test strip Current
Asphodelaceae Aloe sp. 1 11–19 15 ±4 SD 3 Amplex Red kit* Current
Aloe sp. 2 7–19 12 ±5 8 Amplex Red kit* Current
Kniphofia 15 15 3 Peroxide test strip Current
Bignoniaceae Chilopsis linearis < 15 ND (< 15) 3 Peroxide test strip Current
Cerinethe major 24 24 1 Amplex Red kit* Current
Cynoglossum grande 30–150 70 4 Peroxide test strip Current
Echium candicans 3–7 5 ±7 SD 2 Amplex Red kit* Current
Phacelia heterophylla 200–300 300 3 Peroxide test strip Current
Phacelia hydrophylloides 300 300 2 Peroxide test strip Current
Phacelia tanacetifolia 16–57 29 ±16 SD 5 Amplex Red kit* Current
Brassicaceae Brassica oleracea 32–131 69 ±34 SD 3 Amplex Red kit* Current
Erysimum capitatum < 15–15 5 3 Peroxide test strip Current
Caprifoliaceae Lonicera japonica 300 300 2 Peroxide test strip Current
Cleomaceae Cleomella arborea 7–43 23 ±12 SD 12 Amplex Red kit* Current
Crassulaceae Cotyledon orbiculata var. engleri 7–134 59 ±36 SD 20 Amplex Red kit* Current
Cucurbitaceae Cucurbita pepo 3–296 61 ±75.5 SD 16 FOX method* Nocentini (2015)
Ericaceae Arbutus unedo 1500 1500 SD 3 Peroxide test strip Current
Arctostaphylos sp. < 15 ND (< 15) 3 Peroxide test strip Current
Fabaceae Calliandra eriophylla < 15 ND (< 15) 3 Peroxide test strip Current
Erythrina crista-galli 15 15 3 Peroxide test strip Current
Mucuna sempervirens 68.4 ±10.7 SD 30 Beyotime kit* Liu (2013)
Robinia pseudoacacia 48.8 ±0.9 3 Carter, 2000 method* Silva (2018)
Francoaceae Melianthus comosus 22 22 SD 1 Amplex Red kit* Current
Grossulariaceae Ribes cereum < 15–15 5 3 Peroxide test strip Current
Lamiaceae Mondardella odoratissima 15–500 200 3 Peroxide test strip Current
Salvia mellifera 13.1 13.1 1 Amplex Red kit* Current
Phlomis fruticosa < 1 ND (< 1) 36 Amplex Red kit* Current
Onagraceae Clarkia unguiculata 3–13 7 ±4 SD 3 Amplex Red kit* Current
Clarkia unguiculata < 15–15 5 4 Peroxide test strip Current
Epilobium canum ‘silver’ 81–162 103 ±25 SD 10 Amplex Red kit* Current
Epilobium canum ‘canum’ 31–99 72 ±26 9 Amplex Red kit* Current
Epilobium canum ‘calistoga’ 22–97 60 ±26 9 Amplex Red kit* Current
Epilobium canum ‘everrit’ 25–54 39 ±9 10 Amplex Red kit* Current
Oenothera elata < 15 ND (< 15) 2 Peroxide test strip Current
Orobanchaceae Castilleja applegatei < 15 ND (< 15) 1 Peroxide test strip Current
Castilleja miniata 15–60 30 3 Peroxide test strip Current
Phrymaceae Diplacus aurantiacus < 15–15 10 2 Peroxide test strip Current
Plantaginaceae Gambelia speciosa 15 15 SD 3 Peroxide test strip Current
Penstemon centranthifolius 9–21 15 ±4 10 Amplex Red kit* Current
Penstemon gracilentus 60–150 100 2 Peroxide test strip Current
Penstemon heterophyllus 4–24 18 ±7 SD 8 Amplex Red kit* Current
Penstemon heterophyllus 30 30 1 Peroxide test strip Current
Penstemon speciosus 60–300 190 7 Peroxide test strip Current
Polemoniaceae Ipomopsis aggregata < 15 ND (< 15) 2 Peroxide test strip Current
Phlox diffusa < 15 ND (< 15) 1 Peroxide test strip Current
Ranunculaceae Aquilegia formosa < 15 ND (< 15) 3 Peroxide test strip Current
Delphinium gracilentum < 15 ND (< 15) 2 Peroxide test strip Current
Sapindaceae Aesculus californica 7–14 11 ±3 SD 4 Amplex Red kit* Current
Aesculus californica < 15 ND (< 15) 1 Peroxide test strip Current
Scrophulariaceae Russelia equisetiformis < 15 ND (< 15) 4 Peroxide test strip Current
Solanaceae Nicotiana alata 673 ±41.55 SD 3 FOX method* Silva (2018)
Nicotiana attenuata 116.2 ±17.3 SE 7 Luminal chemiluminescence method* Bezzi (2010)
Nicotiana attenuata 23.4 ±1.86 7 Amplex Red kit* Bezzi (2010)
Nicotiana benthamiana 288 ±50.5 SD 3 FOX method* Silva (2018)
Nicotiana bonariensis 1840 ±8.90 3 FOX method* Silva (2018)
Nicotiana clevelandii 869 ±136 3 FOX method* Silva (2018)
Nicotiana glauca 407 ±184 3 FOX method* Silva (2018)
Nicotiana langsdorffii 833 ±127 3 FOX method* Silva (2018)
Nicotiana rustica 2140 ±582 3 FOX method* Silva (2018)
Nicotiana sylvestris 543 ±50.5 3 FOX method* Silva (2018)
Nicotiana sp. < 20–> 4000 771 10 Carter, 2000 method* Carter (2000)
Verbenaceae Lantana montevidensis 30–1500 600 4 Peroxide test strip Current
  • In the current study (45 species; 23 families), nectar samples from individual flowers were pooled to provide sufficient volume for either Amplex Red hydrogen peroxide or colorimetric test strip peroxide detection assays. SD and SE are abbreviations for standard deviation and standard error, respectively. For the Amplex Red assay, the limit of detection (LOD) is 50 nM, while our limit of quantification (LOQ) is 1 μM. Meanwhile, for the test strip assay, the LOD and LOQ are both 0.5 ppm (15 μM). Plant species that we sampled in the present study are colored blue, while those from the literature are indicated in gray. Additionally, species for which hydrogen peroxide (as opposed to peroxide, generally) was specifically measured are marked with an * in the ‘Assay Method’ column.

Concentrations of hydrogen peroxide at and above 2000 μM have been shown to reduce the growth of some common plant pathogens and yeasts, and bacteria isolated from nectar, pollinators, and the environment (Carter & Thornburg, 2004; Carter et al., 2007; Mueller et al., 2023). However, some microbes may tolerate high hydrogen peroxide concentrations (Herrera et al., 2009; Álvarez-Pérez et al., 2012; Vannette et al., 2013), including the nectar-specialist yeast Metschnikowia reukaufii. Catalases defend against oxidative stress by catalyzing the decomposition of hydrogen peroxide, detoxifying the environment and potentially making it more favorable for microbial growth (Vannette et al., 2013; de Vega et al., 2022), for both the catalase producer and possibly co-occurring microbes (Mueller et al., 2023). This has yet to be evaluated in the complex and dynamic nectar environment of living flowers, or at concentrations of hydrogen peroxide lower than 2000 μM. Investigating whether lower concentrations of hydrogen peroxide, which may be more commonly found in nectar, are also antimicrobial is necessary to assess the range of efficacy. Additionally, evaluating microbial taxa that are specialized to nectar and pollinator-associated environments and grow within a community, rather than as individual isolates, will be necessary to assess the range of conditions under which hydrogen peroxide may be an effective defense.

Here, we assess the generality of hydrogen peroxide as a potential antimicrobial compound in floral nectar, including its inducibility and variation in microbial tolerance and compositional response to peroxide. In Aim 1, we surveyed 45 plant species and compiled previous values for 13 additional species from the literature, spanning 25 families to measure the range of nectar peroxide concentration and examine if plant phylogeny predicts hydrogen peroxide concentration. In Aim 2, we assessed if plant defense hormones methyl salicylate (Me-SA) and methyl jasmonate (Me-JA) induce hydrogen peroxide upregulation in nectar. Salicylic acid plays a central role in priming plant defenses against potential microbial pathogens, and we predicted that this could lead to increased nectar defenses and a possible mode of hydrogen peroxide regulation against microbes introduced into nectar. Methyl jasmonate, while typically associated with defense responses to herbivory and tissue damage, has also been found to mediate floral trait expression as well as plant traits that affect microbial growth (Pak et al., 2009; Zuñiga et al., 2020). Next, we assessed microbial responses to field-relevant concentrations of hydrogen peroxide. We approached this question from multiple perspectives. In Aim 3, we tested how yeast identity or isolation source, including bee, floral tissue, and nectar-associated habitats, impacts tolerance to hydrogen peroxide using in vitro assays. Next, in Aim 4, we examined how enzyme-increased hydrogen peroxide in the field shapes microbial community assembly in nectar. Finally, in Aim 5, we examined how individual vs community context determines microbial growth and effects on hydrogen peroxide concentration using lab assays. We predicted that differences we might observe could be mediated by microbial competition or the benefits of co-growth, where the detoxification of hydrogen peroxide by more tolerant microbes could facilitate improved growth of less resilient microbes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
事实证明,浓度达到或超过 2000 μM 的过氧化氢可减少一些常见植物病原体、酵母菌以及从花蜜、传粉者和环境中分离出来的细菌的生长(Carter &amp; Thornburg, 2004; Carter 等人,2007; Mueller 等人,2023)。不过,有些微生物可以耐受高浓度的过氧化氢(Herrera 等人,2009 年;Álvarez-Pérez 等人,2012 年;Vannette 等人,2013 年),包括花蜜专用酵母 Metschnikowia reukaufii。过氧化氢酶通过催化过氧化氢的分解来抵御氧化压力,为环境解毒,并有可能使环境更有利于微生物的生长(Vannette 等人,2013 年;de Vega 等人,2022 年),既有利于过氧化氢酶生产者,也可能有利于共生微生物(Mueller 等人,2023 年)。但在活花复杂多变的花蜜环境中,或在过氧化氢浓度低于 2000 μM 的情况下,这一点还有待评估。有必要调查花蜜中更常见的低浓度过氧化氢是否也具有抗菌作用,以评估其功效范围。此外,有必要评估专门针对花蜜和授粉者相关环境并在群落中生长的微生物类群,而不是单个分离物,以评估过氧化氢可能成为有效防御手段的条件范围。在此,我们评估了过氧化氢作为花蜜中潜在抗菌化合物的普遍性,包括其诱导性以及微生物耐受性和组成对过氧化氢反应的差异。在目标 1 中,我们调查了 45 个植物物种,并从文献中汇编了另外 13 个物种(跨越 25 个科)的先前值,以测量花蜜中过氧化氢浓度的范围,并研究植物系统发育是否能预测过氧化氢浓度。在目标 2 中,我们评估了植物防御激素水杨酸甲酯(Me-SA)和茉莉酸甲酯(Me-JA)是否会诱导花蜜中过氧化氢的上调。水杨酸在植物防御潜在微生物病原体的过程中起着核心作用,我们预测这可能会导致花蜜防御能力的增强,并成为一种针对引入花蜜的微生物的过氧化氢调节模式。茉莉酸甲酯通常与对食草动物和组织损伤的防御反应有关,但也被发现能介导花的性状表达以及影响微生物生长的植物性状(Pak 等人,2009 年;Zuñiga 等人,2020 年)。接下来,我们评估了微生物对田间相关浓度的过氧化氢的反应。我们从多个角度探讨了这一问题。在目标 3 中,我们使用体外试验测试了酵母菌的特性或分离来源(包括蜜蜂、花组织和花蜜相关生境)如何影响对过氧化氢的耐受性。接下来,在目标 4 中,我们研究了田间酶增加的过氧化氢如何影响花蜜中微生物群落的组合。最后,在目标 5 中,我们利用实验室试验研究了个体与群落环境如何决定微生物的生长以及对过氧化氢浓度的影响。我们预测,我们可能观察到的差异可能是由微生物竞争或共同生长的益处介导的,在这种情况下,耐受性较强的微生物对过氧化氢的解毒作用可能会促进耐受性较弱的微生物的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
OsSPL9 promotes Cu uptake and translocation in rice grown in high‐Fe red soil Soil resource acquisition strategy modulates global plant nutrient and water economics Multiple independent MGR5 alleles contribute to a clinal pattern in leaf magnesium across the distribution of Arabidopsis thaliana Assembly mechanism of the β-carboxysome shell mediated by the chaperone CcmS Unlocking plant metabolic resilience: how enzyme-constrained metabolic models illuminate thermal responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1