A polyene macrolide targeting phospholipids in the fungal cell membrane

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-03-19 DOI:10.1038/s41586-025-08678-9
Qisen Deng, Yinchuan Li, Wenyan He, Tao Chen, Nan Liu, Lingman Ma, Zhixia Qiu, Zhuo Shang, Zongqiang Wang
{"title":"A polyene macrolide targeting phospholipids in the fungal cell membrane","authors":"Qisen Deng, Yinchuan Li, Wenyan He, Tao Chen, Nan Liu, Lingman Ma, Zhixia Qiu, Zhuo Shang, Zongqiang Wang","doi":"10.1038/s41586-025-08678-9","DOIUrl":null,"url":null,"abstract":"<p>The global spread of multidrug-resistant pathogenic fungi presents a serious threat to human health, necessitating the discovery of antifungals with unique modes of action<sup>1</sup>. However, conventional activity-based screening for previously undescribed antibiotics has been hampered by the high-frequency rediscovery of known compounds and the lack of new antifungal targets<sup>2</sup>. Here we report the discovery of a polyene antifungal antibiotic, mandimycin, using a phylogeny-guided natural-product discovery platform. Mandimycin is biosynthesized by the mand gene cluster, has evolved in a distinct manner from known polyene macrolide antibiotics and is modified with three deoxy sugars. It has demonstrated potent and broad-spectrum fungicidal activity against a wide range of multidrug-resistant fungal pathogens in both in vitro and in vivo settings. In contrast to known polyene macrolide antibiotics that target ergosterol, mandimycin has a unique mode of action that involves targeting various phospholipids in fungal cell membranes, resulting in the release of essential ions from fungal cells. This unique ability to bind multiple targets gives it robust fungicidal activity as well as the capability to evade resistance. The identification of mandimycin using the phylogeny-guided natural-product discovery strategy represents an important advancement in uncovering antimicrobial compounds with distinct modes of action, which could be developed to combat multidrug-resistant fungal pathogens.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"166 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08678-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The global spread of multidrug-resistant pathogenic fungi presents a serious threat to human health, necessitating the discovery of antifungals with unique modes of action1. However, conventional activity-based screening for previously undescribed antibiotics has been hampered by the high-frequency rediscovery of known compounds and the lack of new antifungal targets2. Here we report the discovery of a polyene antifungal antibiotic, mandimycin, using a phylogeny-guided natural-product discovery platform. Mandimycin is biosynthesized by the mand gene cluster, has evolved in a distinct manner from known polyene macrolide antibiotics and is modified with three deoxy sugars. It has demonstrated potent and broad-spectrum fungicidal activity against a wide range of multidrug-resistant fungal pathogens in both in vitro and in vivo settings. In contrast to known polyene macrolide antibiotics that target ergosterol, mandimycin has a unique mode of action that involves targeting various phospholipids in fungal cell membranes, resulting in the release of essential ions from fungal cells. This unique ability to bind multiple targets gives it robust fungicidal activity as well as the capability to evade resistance. The identification of mandimycin using the phylogeny-guided natural-product discovery strategy represents an important advancement in uncovering antimicrobial compounds with distinct modes of action, which could be developed to combat multidrug-resistant fungal pathogens.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Junction-Enhanced Polarization Sensitivity in Self-Powered Near-Infrared Photodetectors Based on Sb2Se3 Microbelt/n-GaN Heterojunction
IF 9 2区 材料科学Advanced Optical MaterialsPub Date : 2022-11-30 DOI: 10.1002/adom.202202080
Peng Wan, Mingming Jiang, Yun Wei, Tong Xu, Yang Liu, Sihao Xia, Longxing Su, Daning Shi, Xiaosheng Fang, Caixia Kan
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Why is there more matter than antimatter? CERN result offers tantalizing new clue Mathematician who reshaped theory of symmetry wins Abel Prize Exclusive: NIH to cut grants for COVID research, documents reveal The full lethal impact of massive cuts to international food aid Empower families to lead the design of their ageing loved ones’ health care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1