Chengcheng Fan, Yanli Dong, Zhi Li, Qianqian Wang, Zhi Wang, Qiuhua Wu, Chun Wang
{"title":"Preparation of novel cationic porous polymers for effective pre-concentration and sensitive detection of endocrine disruptors in water and fish","authors":"Chengcheng Fan, Yanli Dong, Zhi Li, Qianqian Wang, Zhi Wang, Qiuhua Wu, Chun Wang","doi":"10.1016/j.aca.2025.343956","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Phenolic endocrine disrupting chemicals (EDCs) that are widely present in water environment can mimic hormones and interfere with the endocrine system, posing a severe threat to human health. Therefore, there is an urgent need to develop sensitive methods to effectively monitor phenolic EDCs in environment water and seafood products. In this study, a novel quaternary ammonium cationic porous polymer (AC-HCP3) was synthesized and a new analytical method was established by using AC-HCP3 as solid phase extraction adsorbent in combination with high-performance liquid chromatography, achieving the sensitive and reliable detection of phenolic EDCs in fish and environmental water.<h3>Results</h3>The developed AC-HCP3 has high stability, positive ionic feature and good recycle utilization, achieving high enrichment efficiency that is unsusceptible to pH for several EDCs, including bisphenol F, bisphenol A, bisphenol B, and <em>p</em>-tert-butylphenol. The high enrichment efficiency is proved to be the synergistic effects of π-π conjugation, hydrogen bonding, and electrostatic interactions. Based on AC-HCP3, a feasible and practical detection method was established and employed for determining several phenolic EDCs in fish (Basa fish and tilapia) and environmental water. The method achieved low detection limits of 1.67 - 7.80 ng g<sup>-1</sup> for fish and 0.004 - 0.02 ng mL<sup>-1</sup> for environmental water, with recoveries of 80.7 % - 118 % and relative standard deviations ≤ 8.40 %. The adsorption capacity of AC-HCP3 ranged from 68.73 to 128.53 mg g<sup>-1</sup>. Compared with other reported methods, the developed method offers high sensitivity, efficiency and applicability.<h3>Significance</h3>Herein, for the first time, we designed and synthesized a novel ionic porous polymer (AC-HCP3) through simple preparation process (one-step Friedel-Crafts alkylation reaction). The AC-HCP3 displayed an outstanding adsorption effect in harsh environments such as strong acids and alkalis. This work not only provides a feasible approach for the construction of ionic porous polymers, but also provides an alternative approach for the effective monitoring of phenolic EDCs in complex food and environmental samples.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"146 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343956","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Phenolic endocrine disrupting chemicals (EDCs) that are widely present in water environment can mimic hormones and interfere with the endocrine system, posing a severe threat to human health. Therefore, there is an urgent need to develop sensitive methods to effectively monitor phenolic EDCs in environment water and seafood products. In this study, a novel quaternary ammonium cationic porous polymer (AC-HCP3) was synthesized and a new analytical method was established by using AC-HCP3 as solid phase extraction adsorbent in combination with high-performance liquid chromatography, achieving the sensitive and reliable detection of phenolic EDCs in fish and environmental water.
Results
The developed AC-HCP3 has high stability, positive ionic feature and good recycle utilization, achieving high enrichment efficiency that is unsusceptible to pH for several EDCs, including bisphenol F, bisphenol A, bisphenol B, and p-tert-butylphenol. The high enrichment efficiency is proved to be the synergistic effects of π-π conjugation, hydrogen bonding, and electrostatic interactions. Based on AC-HCP3, a feasible and practical detection method was established and employed for determining several phenolic EDCs in fish (Basa fish and tilapia) and environmental water. The method achieved low detection limits of 1.67 - 7.80 ng g-1 for fish and 0.004 - 0.02 ng mL-1 for environmental water, with recoveries of 80.7 % - 118 % and relative standard deviations ≤ 8.40 %. The adsorption capacity of AC-HCP3 ranged from 68.73 to 128.53 mg g-1. Compared with other reported methods, the developed method offers high sensitivity, efficiency and applicability.
Significance
Herein, for the first time, we designed and synthesized a novel ionic porous polymer (AC-HCP3) through simple preparation process (one-step Friedel-Crafts alkylation reaction). The AC-HCP3 displayed an outstanding adsorption effect in harsh environments such as strong acids and alkalis. This work not only provides a feasible approach for the construction of ionic porous polymers, but also provides an alternative approach for the effective monitoring of phenolic EDCs in complex food and environmental samples.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.