{"title":"The polar-localized borate exporter BOR1 facilitates boron transport in tapetal cells to the developing pollen grains","authors":"Keita Muro, Arisa Yamasaki, Maki Matsumoto, Yu-Ki Tanaka, Yasumitsu Ogra, Toru Fujiwara, Akira Yoshinari, Junpei Takano","doi":"10.1093/plphys/kiaf100","DOIUrl":null,"url":null,"abstract":"Boron is an essential micronutrient required for plant cell wall integrity, as it is necessary for crosslinking the pectic polysaccharide rhamnogalacturonan II. Reproductive organs require a greater amount of boron for development and growth compared to vegetative organs. However, the mechanism by which plants distribute boron to specific organs is not fully understood. Under boron-limited conditions, the borate exporter BOR1 plays a central role in transporting boron from the roots to the shoots in Arabidopsis (Arabidopsis thaliana). Here, we found that BOR1 is expressed in the tapetal cells of young anthers in unopened buds, showing polar localization toward the locule where microspores develop. Tapetum-localized BOR1 undergoes endocytosis and is subsequently degraded during anther development. BOR1 degradation occurs independently of the lysine residue at position 590 of BOR1, which is responsible for high boron-induced ubiquitination and degradation. Loss-of-function bor1 mutants exhibit disrupted pollen structure, causing reduced fertility under boron-sufficient conditions in the wild type. These phenotypes were rescued by supplementing with high boron concentrations. Furthermore, inflorescence stem grafting experiments suggested that BOR1-dependent boron transport in the flower is necessary for pollen development and subsequent fertilization under boron-sufficient conditions. Our findings suggest the borate exporter BOR1, together with the previously described boric acid channel NIP7;1, facilitates boron transport in tapetal cells toward the locule, thereby supporting pollen development in young anthers under boron-limited conditions.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"54 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf100","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Boron is an essential micronutrient required for plant cell wall integrity, as it is necessary for crosslinking the pectic polysaccharide rhamnogalacturonan II. Reproductive organs require a greater amount of boron for development and growth compared to vegetative organs. However, the mechanism by which plants distribute boron to specific organs is not fully understood. Under boron-limited conditions, the borate exporter BOR1 plays a central role in transporting boron from the roots to the shoots in Arabidopsis (Arabidopsis thaliana). Here, we found that BOR1 is expressed in the tapetal cells of young anthers in unopened buds, showing polar localization toward the locule where microspores develop. Tapetum-localized BOR1 undergoes endocytosis and is subsequently degraded during anther development. BOR1 degradation occurs independently of the lysine residue at position 590 of BOR1, which is responsible for high boron-induced ubiquitination and degradation. Loss-of-function bor1 mutants exhibit disrupted pollen structure, causing reduced fertility under boron-sufficient conditions in the wild type. These phenotypes were rescued by supplementing with high boron concentrations. Furthermore, inflorescence stem grafting experiments suggested that BOR1-dependent boron transport in the flower is necessary for pollen development and subsequent fertilization under boron-sufficient conditions. Our findings suggest the borate exporter BOR1, together with the previously described boric acid channel NIP7;1, facilitates boron transport in tapetal cells toward the locule, thereby supporting pollen development in young anthers under boron-limited conditions.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.