I2-Catalyzed Cascade Annulation/Cross-Dehydrogenative Coupling: Excellent Platform to Access 3-Sulfenyl Pyrazolo[1,5-a]pyrimidines with Potent Antibacterial Activity against Pseudomonas aeruginosa and Staphylococcus aureus.
{"title":"I<sub>2</sub>-Catalyzed Cascade Annulation/Cross-Dehydrogenative Coupling: Excellent Platform to Access 3-Sulfenyl Pyrazolo[1,5-<i>a</i>]pyrimidines with Potent Antibacterial Activity against <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i>.","authors":"Suvam Paul, Samik Biswas, Tathagata Choudhuri, Shrabasti Bandyopadhyay, Supratim Mandal, Avik Kumar Bagdi","doi":"10.1021/acsabm.5c00059","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing resistance of bacteria to antibiotics has become a serious threat to existing options for treating bacterial infections. We have developed a synthetic methodology for 3-sulfenyl pyrazolo[1,5-<i>a</i>]pyrimidines with potent antibacterial activity. This iodine-catalyzed strategy has been developed by employing amino pyrazoles, enaminones/chalcones, and thiophenols through intermolecular cyclization and subsequent cross-dehydrogenative sulfenylation. This highly regioselective and practicable protocol has been utilized to synthesize structurally diverse 3-sulfenyl pyrazolo[1,5-<i>a</i>]pyrimidines with wide functionalities. This strategy is also extendable toward the synthesis of bis(pyrazolo[1,5-<i>a</i>]pyrimidin-3-yl)sulfanes from amino pyrazole, enaminones/chalcone, and KSCN and the synthesis of 3-sulfenyl pyrazolo[1,5-<i>a</i>]pyrimidine from direct acetophenone. Mechanistic investigation disclosed a radical pathway for C-H sulfenylation and the involvement of 3-iodo pyrazolo[1,5-<i>a</i>]pyrimidine as the active intermediate. The biological investigation disclosed the potent antibacterial activity of sulfenyl pyrazolo[1,5-<i>a</i>]pyrimidines against <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i>, whereas pyrazolo[1,5-<i>a</i>]pyrimidine and sulfinyl pyrazolo[1,5-<i>a</i>]pyrimidine have no such antibacterial activity. Sulfenyl pyrazolo[1,5-<i>a</i>]pyrimidines mechanistically inhibited bacterial growth by the accumulation of ROS as well as induction in lipid peroxidation. Subsequently, such circumstances changed the membrane potential and facilitated the interaction with membrane-associated proteins, leading to a loss in membrane integrity and damage to bacterial cell membranes. Moreover, these derivatives potentiated the antibacterial efficacy of the commercial antibiotic ciprofloxacin against the selected bacterial strains and can be considered an alternative therapy against these bacterial infections.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing resistance of bacteria to antibiotics has become a serious threat to existing options for treating bacterial infections. We have developed a synthetic methodology for 3-sulfenyl pyrazolo[1,5-a]pyrimidines with potent antibacterial activity. This iodine-catalyzed strategy has been developed by employing amino pyrazoles, enaminones/chalcones, and thiophenols through intermolecular cyclization and subsequent cross-dehydrogenative sulfenylation. This highly regioselective and practicable protocol has been utilized to synthesize structurally diverse 3-sulfenyl pyrazolo[1,5-a]pyrimidines with wide functionalities. This strategy is also extendable toward the synthesis of bis(pyrazolo[1,5-a]pyrimidin-3-yl)sulfanes from amino pyrazole, enaminones/chalcone, and KSCN and the synthesis of 3-sulfenyl pyrazolo[1,5-a]pyrimidine from direct acetophenone. Mechanistic investigation disclosed a radical pathway for C-H sulfenylation and the involvement of 3-iodo pyrazolo[1,5-a]pyrimidine as the active intermediate. The biological investigation disclosed the potent antibacterial activity of sulfenyl pyrazolo[1,5-a]pyrimidines against Pseudomonas aeruginosa and Staphylococcus aureus, whereas pyrazolo[1,5-a]pyrimidine and sulfinyl pyrazolo[1,5-a]pyrimidine have no such antibacterial activity. Sulfenyl pyrazolo[1,5-a]pyrimidines mechanistically inhibited bacterial growth by the accumulation of ROS as well as induction in lipid peroxidation. Subsequently, such circumstances changed the membrane potential and facilitated the interaction with membrane-associated proteins, leading to a loss in membrane integrity and damage to bacterial cell membranes. Moreover, these derivatives potentiated the antibacterial efficacy of the commercial antibiotic ciprofloxacin against the selected bacterial strains and can be considered an alternative therapy against these bacterial infections.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.