Decoding Anti-Amyloidogenic and Fibril Neutralizing Action of Gut Microbiota-Derived Indole 3-Acetic Acid on Insulin Fibrillation through Multispectroscopic, Machine Learning, and Hybrid Quantum Mechanics/Molecular Mechanics Approaches.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-03-20 DOI:10.1021/acs.jpcb.4c07325
Saswati Soumya Mohapatra, Krishna Singh Bisht, Sakshi Suryawanshi, Shreshth Gupta, Viplov Kumar Biswas, Ayon Chakraborty, Sunil Kumar Raghav, Tushar Kanti Maiti, Rajiv K Kar, Ashis Biswas
{"title":"Decoding Anti-Amyloidogenic and Fibril Neutralizing Action of Gut Microbiota-Derived Indole 3-Acetic Acid on Insulin Fibrillation through Multispectroscopic, Machine Learning, and Hybrid Quantum Mechanics/Molecular Mechanics Approaches.","authors":"Saswati Soumya Mohapatra, Krishna Singh Bisht, Sakshi Suryawanshi, Shreshth Gupta, Viplov Kumar Biswas, Ayon Chakraborty, Sunil Kumar Raghav, Tushar Kanti Maiti, Rajiv K Kar, Ashis Biswas","doi":"10.1021/acs.jpcb.4c07325","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin fibrillation inflicts both economic and clinical challenges by causing bioactivity loss, inflammation, and adverse effects during storage, transport, and injection. The present study explores antiamyloidogenic and fibril-disaggregating effects of a gut microbiota-derived indole metabolite, indole-3-acetic acid (IAA) on insulin fibrillation. According to Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM), IAA significantly inhibited both primary and seed-induced fibrillation of insulin. We note that IAA reduced insulin aggregate sizes as evident from the scattering profiles, while circular dichroism studies confirmed that IAA preserves native α-helical structure possibly minimizing the exposed surface hydrophobicity of insulin. Additionally, IAA showed effectiveness in breaking apart preformed fibrils, indicated by a time-dependent decrease in ThT fluorescence and further confirmed by TEM. Our biolayer interferometry interaction studies revealed a moderate 2:1 binding affinity between IAA and insulin. Two key binding sites on insulin were identified via machine-learning-based-docking and hybrid QM/MM studies, where IAA interacts. Site I (Leu13<sup>A</sup>, Tyr14<sup>A</sup>, Glu17<sup>A</sup>, Phe1<sup>B</sup>) showed more favorable interaction energetics than site II (Tyr19<sup>A</sup>, Phe25<sup>B</sup>, Thr27<sup>B</sup>) based on SAPT0 residue-wise interaction energy analysis. IAA also protected cells from fibril-induced cytotoxicity and hemolysis, thereby offering a promising therapeutic option for amyloid-related disorders, with dual action in preventing fibril formation and promoting fibril disaggregation.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07325","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin fibrillation inflicts both economic and clinical challenges by causing bioactivity loss, inflammation, and adverse effects during storage, transport, and injection. The present study explores antiamyloidogenic and fibril-disaggregating effects of a gut microbiota-derived indole metabolite, indole-3-acetic acid (IAA) on insulin fibrillation. According to Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM), IAA significantly inhibited both primary and seed-induced fibrillation of insulin. We note that IAA reduced insulin aggregate sizes as evident from the scattering profiles, while circular dichroism studies confirmed that IAA preserves native α-helical structure possibly minimizing the exposed surface hydrophobicity of insulin. Additionally, IAA showed effectiveness in breaking apart preformed fibrils, indicated by a time-dependent decrease in ThT fluorescence and further confirmed by TEM. Our biolayer interferometry interaction studies revealed a moderate 2:1 binding affinity between IAA and insulin. Two key binding sites on insulin were identified via machine-learning-based-docking and hybrid QM/MM studies, where IAA interacts. Site I (Leu13A, Tyr14A, Glu17A, Phe1B) showed more favorable interaction energetics than site II (Tyr19A, Phe25B, Thr27B) based on SAPT0 residue-wise interaction energy analysis. IAA also protected cells from fibril-induced cytotoxicity and hemolysis, thereby offering a promising therapeutic option for amyloid-related disorders, with dual action in preventing fibril formation and promoting fibril disaggregation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Modulating Enzyme's Conformational Space: Impact of Substrate Binding, Mode Alteration, and Active Site Mutation in DapC, an Aminotransferase Enzyme of Lysine Biosynthetic Pathway. Local Diffusion Coefficients in Spherically Symmetric Systems Using the Smoluchowski Equation and Molecular Dynamics. Multiblock Copolymers at Liquid-Liquid Interfaces: Effect of the Block Sequence on Interfacial Tension and Polymer Conformation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1