Alleviation effects of Lactobacillus plantarum in colitis aggravated by a high-salt diet depend on intestinal barrier protection, NF-κB pathway regulation, and oxidative stress improvement.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2025-03-20 DOI:10.1039/d4fo06377e
Yang Chen, Nian Liu, Fangyi Chen, Mengyuan Liu, Yang Mu, Chao Wang, Lusha Xia, Mingye Peng, Mengzhou Zhou
{"title":"Alleviation effects of <i>Lactobacillus plantarum</i> in colitis aggravated by a high-salt diet depend on intestinal barrier protection, NF-κB pathway regulation, and oxidative stress improvement.","authors":"Yang Chen, Nian Liu, Fangyi Chen, Mengyuan Liu, Yang Mu, Chao Wang, Lusha Xia, Mingye Peng, Mengzhou Zhou","doi":"10.1039/d4fo06377e","DOIUrl":null,"url":null,"abstract":"<p><p>A high-salt diet (HSD) can result in numerous health issues, including exacerbation of intestinal inflammation. Therefore, there is an immediate necessity of developing dietary supplements that can mitigate colitis exacerbated by a HSD. This study examined the impact of <i>Lactobacillus plantarum</i> HGD228 on colitis exacerbated by a HSD and the mechanisms underlying its alleviation. HGD228 treatment significantly enhanced colonic goblet cells and MUC2, upregulated ZO-1 and occludin, inhibited epithelial cell apoptosis, and mitigated colitis exacerbated by a HSD. Moreover, HGD228 significantly regulated oxidative stress-related enzymes, including SOD, GSH-PX, and CAT. HGD228 treatment significantly suppressed the NF-κB pathway induced by a HSD and regulated the levels of cytokines, including TNF-α, IL-10, and IL-1β. Furthermore, HGD228 reestablished the gut microbiota altered by HSDDSS, increasing <i>Bifidobacterium</i> while decreasing <i>Escherichia</i>-<i>Shigella</i> and <i>Clostridium sensu stricto 1</i>. HGD228 treatment also enhanced the production of butyric acid and acetic acid, suppressed pro-inflammatory cytokines, and strengthened the intestinal mucosal barrier. Therefore, HGD228 enhanced the production of beneficial metabolites by regulating inflammatory cytokines and oxidative stress, preserving the mucosal barrier, and enhancing gut microbiota, and mitigated colitis aggravated by a HSD. These results will aid in clinical trials of probiotics and the development of dietary supplements for colitis, with promising application value.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo06377e","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A high-salt diet (HSD) can result in numerous health issues, including exacerbation of intestinal inflammation. Therefore, there is an immediate necessity of developing dietary supplements that can mitigate colitis exacerbated by a HSD. This study examined the impact of Lactobacillus plantarum HGD228 on colitis exacerbated by a HSD and the mechanisms underlying its alleviation. HGD228 treatment significantly enhanced colonic goblet cells and MUC2, upregulated ZO-1 and occludin, inhibited epithelial cell apoptosis, and mitigated colitis exacerbated by a HSD. Moreover, HGD228 significantly regulated oxidative stress-related enzymes, including SOD, GSH-PX, and CAT. HGD228 treatment significantly suppressed the NF-κB pathway induced by a HSD and regulated the levels of cytokines, including TNF-α, IL-10, and IL-1β. Furthermore, HGD228 reestablished the gut microbiota altered by HSDDSS, increasing Bifidobacterium while decreasing Escherichia-Shigella and Clostridium sensu stricto 1. HGD228 treatment also enhanced the production of butyric acid and acetic acid, suppressed pro-inflammatory cytokines, and strengthened the intestinal mucosal barrier. Therefore, HGD228 enhanced the production of beneficial metabolites by regulating inflammatory cytokines and oxidative stress, preserving the mucosal barrier, and enhancing gut microbiota, and mitigated colitis aggravated by a HSD. These results will aid in clinical trials of probiotics and the development of dietary supplements for colitis, with promising application value.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Alleviation effects of Lactobacillus plantarum in colitis aggravated by a high-salt diet depend on intestinal barrier protection, NF-κB pathway regulation, and oxidative stress improvement. Isorhamnetin ameliorates hyperuricemia by regulating uric acid metabolism and alleviates renal inflammation through the PI3K/AKT/NF-κB signaling pathway. Back cover Comment on "The quercetin metabolite 4-methylcatechol causes vasodilation via voltage-gated potassium (Kv) channels" by Patrícia Dias, Rudy Salam, Jana Pourová, Marie Vopršalová, Lukáš Konečný, Eduard Jirkovský, Jurjen Duintjer Tebbens and Přemysl Mladěnka, Food & Function, 2024, 15, 11047. Dietary alpha-lipoic acid alleviates heat stress by modulating insulin-like signaling to maintain homeostasis in C. elegans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1