Automated Refinement of Property-Specific Polarizable Gaussian Multipole Water Models Using Bayesian Black-Box Optimization.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2025-03-19 DOI:10.1021/acs.jctc.5c00039
Yongxian Wu, Qiang Zhu, Zhen Huang, Piotr Cieplak, Yong Duan, Ray Luo
{"title":"Automated Refinement of Property-Specific Polarizable Gaussian Multipole Water Models Using Bayesian Black-Box Optimization.","authors":"Yongxian Wu, Qiang Zhu, Zhen Huang, Piotr Cieplak, Yong Duan, Ray Luo","doi":"10.1021/acs.jctc.5c00039","DOIUrl":null,"url":null,"abstract":"<p><p>The critical importance of water in sustaining life highlights the need for accurate water models in computer simulations, aiming to mimic biochemical processes experimentally. The polarizable Gaussian multipole (pGM) model, recently introduced for biomolecular simulations, improves the handling of complex biomolecular interactions. As an integral part of our initial exploration, we examined a minimalist fixed geometry three-center pGM water model using <i>ab initio</i> quantum mechanical calculations of water oligomers. However, our final model development was based on liquid-phase water properties, leveraging automated machine learning (AutoML) techniques for optimization. This allows the development of a framework to refine both van der Waals and electrostatic parameters of the pGM model, aiming to accurately reproduce specific properties such as the oxygen-oxygen radial distribution function, density, and dipole moment, all at 298 K and 1.0 bar pressure. The efficacy of the optimized three-center pGM water model, pGM3P-25, was assessed through simulations of a water box of 512 water molecules, showcasing marked enhancements in both accuracy and practical utility. Notably, the model accurately reproduces thermodynamic properties not explicitly included in training while significantly reducing the time and human effort required for optimization. It was found that pGM3P-25 can reproduce temperature-dependent properties such as density, self-diffusion constants, heat capacity, second virial coefficient, and dielectric constant, which are important in biomolecular simulations. This study underscores the potential of AutoML-driven frameworks to streamline parameter refinement for molecular dynamics simulations, paving the way for broader applications in computational chemistry and beyond.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The critical importance of water in sustaining life highlights the need for accurate water models in computer simulations, aiming to mimic biochemical processes experimentally. The polarizable Gaussian multipole (pGM) model, recently introduced for biomolecular simulations, improves the handling of complex biomolecular interactions. As an integral part of our initial exploration, we examined a minimalist fixed geometry three-center pGM water model using ab initio quantum mechanical calculations of water oligomers. However, our final model development was based on liquid-phase water properties, leveraging automated machine learning (AutoML) techniques for optimization. This allows the development of a framework to refine both van der Waals and electrostatic parameters of the pGM model, aiming to accurately reproduce specific properties such as the oxygen-oxygen radial distribution function, density, and dipole moment, all at 298 K and 1.0 bar pressure. The efficacy of the optimized three-center pGM water model, pGM3P-25, was assessed through simulations of a water box of 512 water molecules, showcasing marked enhancements in both accuracy and practical utility. Notably, the model accurately reproduces thermodynamic properties not explicitly included in training while significantly reducing the time and human effort required for optimization. It was found that pGM3P-25 can reproduce temperature-dependent properties such as density, self-diffusion constants, heat capacity, second virial coefficient, and dielectric constant, which are important in biomolecular simulations. This study underscores the potential of AutoML-driven frameworks to streamline parameter refinement for molecular dynamics simulations, paving the way for broader applications in computational chemistry and beyond.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Diabatic States of Charge Transfer with Constrained Charge Equilibration. Efficient Hybrid-Functional-Based Force and Stress Calculations for Periodic Systems with Thousands of Atoms. Comparative Analysis of Reinforcement Learning Algorithms for Finding Reaction Pathways: Insights from a Large Benchmark Data Set. Fine-Tuned Global Neural Network Potentials for Global Potential Energy Surface Exploration at High Accuracy. First-Principles Simulations of Molecular Optoelectronic Materials: Elementary Excitations and Spatiotemporal Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1