{"title":"Efficient Hybrid-Functional-Based Force and Stress Calculations for Periodic Systems with Thousands of Atoms.","authors":"Peize Lin, Yuyang Ji, Lixin He, Xinguo Ren","doi":"10.1021/acs.jctc.4c01635","DOIUrl":null,"url":null,"abstract":"<p><p>We present an efficient linear-scaling algorithm for evaluating the analytical force and stress contributions derived from the exact-exchange energy, a key component in hybrid functional calculations. The algorithm, working equally well for molecular and periodic systems, is formulated within the framework of numerical atomic orbital (NAO) basis sets and takes advantage of the localized resolution-of-identity (LRI) technique for treating the two-electron Coulomb repulsion integrals. The linear-scaling behavior is realized by fully exploiting the sparsity of the expansion coefficients resulting from the strict locality of the NAOs and the LRI ansatz. Our implementation is massively parallel, and enables efficient structural relaxation based on hybrid density functionals for bulk materials containing thousands of atoms. In this work, we will present a detailed description of our algorithm and benchmark the performance of our implementation using illustrating examples. By optimizing the structures of the pristine and doped halide perovskite material CsSnI<sub>3</sub> with different functionals, we find that in the presence of lattice strain, hybrid functionals provide a more accurate description of the stereochemical expression of the lone pair.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01635","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present an efficient linear-scaling algorithm for evaluating the analytical force and stress contributions derived from the exact-exchange energy, a key component in hybrid functional calculations. The algorithm, working equally well for molecular and periodic systems, is formulated within the framework of numerical atomic orbital (NAO) basis sets and takes advantage of the localized resolution-of-identity (LRI) technique for treating the two-electron Coulomb repulsion integrals. The linear-scaling behavior is realized by fully exploiting the sparsity of the expansion coefficients resulting from the strict locality of the NAOs and the LRI ansatz. Our implementation is massively parallel, and enables efficient structural relaxation based on hybrid density functionals for bulk materials containing thousands of atoms. In this work, we will present a detailed description of our algorithm and benchmark the performance of our implementation using illustrating examples. By optimizing the structures of the pristine and doped halide perovskite material CsSnI3 with different functionals, we find that in the presence of lattice strain, hybrid functionals provide a more accurate description of the stereochemical expression of the lone pair.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.