{"title":"Diabatic States of Charge Transfer with Constrained Charge Equilibration.","authors":"Sohang Kundu, Hong-Zhou Ye, Timothy C Berkelbach","doi":"10.1021/acs.jctc.4c01604","DOIUrl":null,"url":null,"abstract":"<p><p>Charge transfer (CT) processes that are electronically nonadiabatic are ubiquitous in chemistry, biology, and materials science, but their theoretical description requires diabatic states or adiabatic excited states. For complex systems, these latter states are more difficult to calculate than the adiabatic ground state. Here, we propose a simple method to obtain diabatic states, including energies and charges, by constraining the atomic charges within the charge equilibration framework. For two-state systems, the exact diabatic coupling can be determined, from which the adiabatic excited-state energy can also be calculated. The method can be viewed as an affordable alternative to constrained density functional theory (CDFT), and so we call it constrained charge equilibration (CQEq). We test the CQEq method on the anthracene-tetracyanoethylene CT complex and the reductive decomposition of ethylene carbonate on a lithium metal surface. We find that CQEq predicts diabatic energies, charges, and adiabatic excitation energies in good agreement with CDFT, and we propose that CQEq is promising for combination with machine learning force fields to study nonadiabatic CT in the condensed phase.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01604","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Charge transfer (CT) processes that are electronically nonadiabatic are ubiquitous in chemistry, biology, and materials science, but their theoretical description requires diabatic states or adiabatic excited states. For complex systems, these latter states are more difficult to calculate than the adiabatic ground state. Here, we propose a simple method to obtain diabatic states, including energies and charges, by constraining the atomic charges within the charge equilibration framework. For two-state systems, the exact diabatic coupling can be determined, from which the adiabatic excited-state energy can also be calculated. The method can be viewed as an affordable alternative to constrained density functional theory (CDFT), and so we call it constrained charge equilibration (CQEq). We test the CQEq method on the anthracene-tetracyanoethylene CT complex and the reductive decomposition of ethylene carbonate on a lithium metal surface. We find that CQEq predicts diabatic energies, charges, and adiabatic excitation energies in good agreement with CDFT, and we propose that CQEq is promising for combination with machine learning force fields to study nonadiabatic CT in the condensed phase.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.