{"title":"Integrated AI and machine learning pipeline identifies novel WEE1 kinase inhibitors for targeted cancer therapy.","authors":"Jaikanth Chandrasekaran, Dhanushya Gopal, Lokesh Vishwa Sureshkumar, Infant Xavier Santhiyagu, Varsha Senthil Kumar, Bhuvaneshwari Munuswamy, Beevi Fathima Harshatha Mohamed Yousuf Gani, Mohit Agrawal","doi":"10.1007/s11030-025-11157-y","DOIUrl":null,"url":null,"abstract":"<p><p>The dysregulation of the cell cycle in cancer underscores the therapeutic potential of targeting WEE1 kinase, a key regulator of the G2/M checkpoint. This study harnessed artificial intelligence (AI)-driven methodologies, particularly the MORLD platform, to identify novel WEE1 inhibitors. Starting with clinically validated WEE1 inhibitors as references, we generated 20,000 structurally diverse compounds optimized for binding affinity, synthetic accessibility, and drug-likeness. A rigorous cheminformatics pipeline-comprising PAINS filtering, physicochemical property assessments, and molecular fingerprinting-refined this library to 242 promising candidates. Dimensionality reduction using UMAP and clustering via K-means enabled the prioritization of structurally unique leads. Molecular docking studies highlighted two compounds, MORLD5036 and MORLD6305, with exceptional binding affinities and interactions with key WEE1 active site residues. Molecular dynamics simulations and MM-GBSA binding free energy calculations further validated MORLD5036 as the most stable and potent inhibitor. Scaffold analysis revealed novel chemotypes distinct from existing inhibitors, enhancing potential for intellectual property. Comprehensive ADME profiling confirmed favorable pharmacokinetics, while synthetic accessibility evaluations indicated practicality for experimental validation. The identified lead compound, MORLD5036, exhibits favorable pharmacokinetics and novel chemotypes, positioning it as a potential therapeutic candidate for cancers reliant on WEE1-mediated cell cycle control. This integrated, AI-driven pipeline expedites the identification of next-generation WEE1 inhibitors, paving the way for advancements in precision oncology. Unlike traditional methods reliant on pre-existing datasets, this study leverages MORLD's reinforcement learning framework to autonomously generate inhibitors, enabling exploration of uncharted chemical space. These findings establish MORLD5036 as a computationally promising WEE1 inhibitor candidate warranting further experimental validation.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11157-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The dysregulation of the cell cycle in cancer underscores the therapeutic potential of targeting WEE1 kinase, a key regulator of the G2/M checkpoint. This study harnessed artificial intelligence (AI)-driven methodologies, particularly the MORLD platform, to identify novel WEE1 inhibitors. Starting with clinically validated WEE1 inhibitors as references, we generated 20,000 structurally diverse compounds optimized for binding affinity, synthetic accessibility, and drug-likeness. A rigorous cheminformatics pipeline-comprising PAINS filtering, physicochemical property assessments, and molecular fingerprinting-refined this library to 242 promising candidates. Dimensionality reduction using UMAP and clustering via K-means enabled the prioritization of structurally unique leads. Molecular docking studies highlighted two compounds, MORLD5036 and MORLD6305, with exceptional binding affinities and interactions with key WEE1 active site residues. Molecular dynamics simulations and MM-GBSA binding free energy calculations further validated MORLD5036 as the most stable and potent inhibitor. Scaffold analysis revealed novel chemotypes distinct from existing inhibitors, enhancing potential for intellectual property. Comprehensive ADME profiling confirmed favorable pharmacokinetics, while synthetic accessibility evaluations indicated practicality for experimental validation. The identified lead compound, MORLD5036, exhibits favorable pharmacokinetics and novel chemotypes, positioning it as a potential therapeutic candidate for cancers reliant on WEE1-mediated cell cycle control. This integrated, AI-driven pipeline expedites the identification of next-generation WEE1 inhibitors, paving the way for advancements in precision oncology. Unlike traditional methods reliant on pre-existing datasets, this study leverages MORLD's reinforcement learning framework to autonomously generate inhibitors, enabling exploration of uncharted chemical space. These findings establish MORLD5036 as a computationally promising WEE1 inhibitor candidate warranting further experimental validation.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;