{"title":"Positional distribution of DHA in triacylglycerols: natural sources, synthetic routes, and nutritional properties.","authors":"Feng Li, Yibing Ning, Yiren Zhang, Huidong Huang, Qingbin Yuan, Xingguo Wang, Wei Wei","doi":"10.1080/10408398.2025.2479071","DOIUrl":null,"url":null,"abstract":"<p><p>Docosahexaenoic acid (DHA, 22:6 n-3) is a long-chain polyunsaturated fatty acid (PUFA) present in high quantities in the mammalian brain and is a precursor of several metabolites. Clinical trials have demonstrated the benefits of dietary DHA in infants and adults. Triacylglycerols (TAGs) are the most abundant components of many natural oils, and in specific oils (e.g., fish, algal oils, etc.), they represent the main molecular form of dietary DHA. The positional distribution of DHA in the TAG glycerol backbone (<i>sn</i>-2 vs. <i>sn</i>-1/3) varied among different sources. Recent studies have shown that in human breast milk, DHA is mainly esterified at the <i>sn</i>-2 position (∼50% DHA of the total DHA), thus attracting research interest regarding the nutritional properties of <i>sn</i>-2 DHA. In this review, we summarize the different sources of TAG in natural oils with high amounts of DHA, including fish, algae, and marine mammal oils, with a focus on their positional distribution. Methods for analyzing the distribution of fatty acids in TAG of high-PUFA oils are discussed, and the lipase-catalyzed synthetic routes of specific triacylglycerols with <i>sn</i>-2 DHA are summarized. Furthermore, we discuss the recent research progress on the nutritional properties of DHA associated with its positional distribution on TAGs.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-19"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2479071","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is a long-chain polyunsaturated fatty acid (PUFA) present in high quantities in the mammalian brain and is a precursor of several metabolites. Clinical trials have demonstrated the benefits of dietary DHA in infants and adults. Triacylglycerols (TAGs) are the most abundant components of many natural oils, and in specific oils (e.g., fish, algal oils, etc.), they represent the main molecular form of dietary DHA. The positional distribution of DHA in the TAG glycerol backbone (sn-2 vs. sn-1/3) varied among different sources. Recent studies have shown that in human breast milk, DHA is mainly esterified at the sn-2 position (∼50% DHA of the total DHA), thus attracting research interest regarding the nutritional properties of sn-2 DHA. In this review, we summarize the different sources of TAG in natural oils with high amounts of DHA, including fish, algae, and marine mammal oils, with a focus on their positional distribution. Methods for analyzing the distribution of fatty acids in TAG of high-PUFA oils are discussed, and the lipase-catalyzed synthetic routes of specific triacylglycerols with sn-2 DHA are summarized. Furthermore, we discuss the recent research progress on the nutritional properties of DHA associated with its positional distribution on TAGs.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.