Desynchronization Increased in the Synchronized State: Subsets of Neocortical Neurons Become Strongly Anticorrelated during NonREM Sleep.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-03-19 Print Date: 2025-03-01 DOI:10.1523/ENEURO.0494-22.2025
Tangyu Liu, Jeremiah Hartner, Brendon O Watson
{"title":"Desynchronization Increased in the Synchronized State: Subsets of Neocortical Neurons Become Strongly Anticorrelated during NonREM Sleep.","authors":"Tangyu Liu, Jeremiah Hartner, Brendon O Watson","doi":"10.1523/ENEURO.0494-22.2025","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to better understand the dynamics of cortical neurons during nonREM sleep-a state in which neuronal populations are silenced for ∼100 ms of every second due to delta wave fluctuations. This alternation between periods of population spiking (\"UP states\") and silence (\"DOWN states\") generally synchronizes populations at the 1 s timescale, although some prior work has shown that anticorrelations in nonREM can occur in pairs of neurons that are anticorrelated in wake. We used 24 h recordings of frontal cortical neurons in rats to measure cross-correlation between pairs of neurons in wake, nonREM, and REM. Surprisingly, while most pairs of neurons were synchronized, we found a minority of pairs that showed significant nonREM-induced desynchronization, as indicated by negative cross-correlations in nonREM without equivalent anticorrelation in wake or REM. Interestingly, the degree of anticorrelation within NREM epochs was positively modulated by oscillations in the low-frequency (i.e., \"delta\" or 1-4 Hz) range, meaning anticorrelation between some pairs increases when correlation increases between other pairs. Furthermore, this effect was mediated by firing during the nonsilent UP state phase of the delta cycle, indicating it is not due to neurons active in the DOWN state. Finally, high-variance spike timing between pairs of neurons and burst spiking during UP states are shown to specifically contribute to the anticorrelation. This state-specific desynchronization during the \"synchronized\" state represents a new phenomenon that can lead to new understanding of network dynamics during sleep.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"12 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0494-22.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to better understand the dynamics of cortical neurons during nonREM sleep-a state in which neuronal populations are silenced for ∼100 ms of every second due to delta wave fluctuations. This alternation between periods of population spiking ("UP states") and silence ("DOWN states") generally synchronizes populations at the 1 s timescale, although some prior work has shown that anticorrelations in nonREM can occur in pairs of neurons that are anticorrelated in wake. We used 24 h recordings of frontal cortical neurons in rats to measure cross-correlation between pairs of neurons in wake, nonREM, and REM. Surprisingly, while most pairs of neurons were synchronized, we found a minority of pairs that showed significant nonREM-induced desynchronization, as indicated by negative cross-correlations in nonREM without equivalent anticorrelation in wake or REM. Interestingly, the degree of anticorrelation within NREM epochs was positively modulated by oscillations in the low-frequency (i.e., "delta" or 1-4 Hz) range, meaning anticorrelation between some pairs increases when correlation increases between other pairs. Furthermore, this effect was mediated by firing during the nonsilent UP state phase of the delta cycle, indicating it is not due to neurons active in the DOWN state. Finally, high-variance spike timing between pairs of neurons and burst spiking during UP states are shown to specifically contribute to the anticorrelation. This state-specific desynchronization during the "synchronized" state represents a new phenomenon that can lead to new understanding of network dynamics during sleep.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Macro- and Microstructural Alterations in the Midbrain in Early Psychosis Associates with Clinical Symptom Scores. Clinical efficacy of atomoxetine hydrochloride combined with electroencephalographic biofeedback in attention deficit hyperactivity disorder in children. Investigating the Speed and Accuracy of Human Movement Corrections to Visual, Somatosensory, and Tactile Perturbations: Evidence for Distinct Sensorimotor Processes. Desynchronization Increased in the Synchronized State: Subsets of Neocortical Neurons Become Strongly Anticorrelated during NonREM Sleep. Individual Differences in Cognition and Perception Predict Neural Processing of Speech in Noise for Audiometrically Normal Listeners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1