{"title":"Raman and IR spectroscopy as a promising approach to rapid and non-destructive monitoring of chlorogenic acid in protein matrices.","authors":"Yulia Vershinina, Elizaveta Reshetnikova, Shixian Lv, Irina Kolesnik, Olesya Kapitanova, Irina Veselova","doi":"10.3389/fchem.2025.1543663","DOIUrl":null,"url":null,"abstract":"<p><p>Sunflower meal, a by-product of the oil extraction process from sunflower seeds, has high-quality protein content. Its low production cost, near-absence of toxic substances, and close to \"ideal\" amino acid composition give it several advantages over other plant-based protein sources. However, at the moment, the use of sunflower meal in the food industry is still limited. This is due to the high content of phenolic compounds (1-4 wt%), particularly chlorogenic acid. The oxidation products of these compounds easily bind to protein molecules, giving the final product a dark green color and bitter taste. Currently, there is a high demand for the development of methods for rapid monitoring of the content of phenolic compounds in plant materials without special processing at various stages of the technological process without preliminary sample preparation for analysis. In this study, we used non-destructive vibrational spectroscopy techniques-Raman and FTIR-to monitor the content of chlorogenic acid in the raw material. As a result, an approach for the determination of chlorogenic acid in sunflower meal using IR spectroscopy with limit of detection (LOD) 0.75 wt% has been proposed. Its content in the studied sample of sunflower meal was 5.6 wt%, which was confirmed by UV-spectroscopy and HPLC. The paper demonstrates the principal possibility of analyzing protein isolates using Raman scattering, with the LOD for chlorogenic acid content at 1 wt%.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1543663"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1543663","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sunflower meal, a by-product of the oil extraction process from sunflower seeds, has high-quality protein content. Its low production cost, near-absence of toxic substances, and close to "ideal" amino acid composition give it several advantages over other plant-based protein sources. However, at the moment, the use of sunflower meal in the food industry is still limited. This is due to the high content of phenolic compounds (1-4 wt%), particularly chlorogenic acid. The oxidation products of these compounds easily bind to protein molecules, giving the final product a dark green color and bitter taste. Currently, there is a high demand for the development of methods for rapid monitoring of the content of phenolic compounds in plant materials without special processing at various stages of the technological process without preliminary sample preparation for analysis. In this study, we used non-destructive vibrational spectroscopy techniques-Raman and FTIR-to monitor the content of chlorogenic acid in the raw material. As a result, an approach for the determination of chlorogenic acid in sunflower meal using IR spectroscopy with limit of detection (LOD) 0.75 wt% has been proposed. Its content in the studied sample of sunflower meal was 5.6 wt%, which was confirmed by UV-spectroscopy and HPLC. The paper demonstrates the principal possibility of analyzing protein isolates using Raman scattering, with the LOD for chlorogenic acid content at 1 wt%.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.