Poonam Kumari, Sheenam Garg, Ashutosh Kumar Arya, Jyotdeep Kaur, Naresh Kumar Sachdeva, Uma Nahar Saikia, Divya Dahiya, Sanjay Kumar Bhadada, Sudhaker D Rao
{"title":"Enhancer of zeste homolog 2 (EZH2) in endocrine tumors: current knowledge and future directions.","authors":"Poonam Kumari, Sheenam Garg, Ashutosh Kumar Arya, Jyotdeep Kaur, Naresh Kumar Sachdeva, Uma Nahar Saikia, Divya Dahiya, Sanjay Kumar Bhadada, Sudhaker D Rao","doi":"10.1080/14728222.2025.2482555","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that orchestrates gene expression via epigenetic and non-epigenetic mechanisms. EZH2 performs epigenetic functions by methylating histones and/or non-histone proteins and suppressing or activating target genes. Moreover, non-epigenetic functions involve dysregulation of target genes independent of histone methylation, thereby impacting multiple signaling pathways.</p><p><strong>Areas covered: </strong>EZH2 has emerged as a pivotal player in the initiation of various cancers. EZH2 overexpression facilitated by H3K27me3 is the principal driver. However, the consequent dysregulation of target genes resulting from EZH2 overexpression has emerged as a secondary instigator of tumorigenesis, leading to metastasis and poor prognosis. Further complexity arises from somatic mutations in EZH2 and downstream target genes such as BRAF and RASSF1A. However, understanding its effects on endocrine tumors/cancers remains an underexplored with the potential to significantly enhance clinical outcomes and contribute to human health. Therefore, the present review focuses on the multifaceted functions of EZH2 and its pathophysiological mechanisms in tumor proliferation, with a specific emphasis on endocrine tumors.</p><p><strong>Expert opinion: </strong>Investigating EZH2 mechanisms and targeting with inhibitors and drugs is an active area of research that could offer a promising avenue for treatment and a better understanding of molecular therapeutic interventions.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2482555","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that orchestrates gene expression via epigenetic and non-epigenetic mechanisms. EZH2 performs epigenetic functions by methylating histones and/or non-histone proteins and suppressing or activating target genes. Moreover, non-epigenetic functions involve dysregulation of target genes independent of histone methylation, thereby impacting multiple signaling pathways.
Areas covered: EZH2 has emerged as a pivotal player in the initiation of various cancers. EZH2 overexpression facilitated by H3K27me3 is the principal driver. However, the consequent dysregulation of target genes resulting from EZH2 overexpression has emerged as a secondary instigator of tumorigenesis, leading to metastasis and poor prognosis. Further complexity arises from somatic mutations in EZH2 and downstream target genes such as BRAF and RASSF1A. However, understanding its effects on endocrine tumors/cancers remains an underexplored with the potential to significantly enhance clinical outcomes and contribute to human health. Therefore, the present review focuses on the multifaceted functions of EZH2 and its pathophysiological mechanisms in tumor proliferation, with a specific emphasis on endocrine tumors.
Expert opinion: Investigating EZH2 mechanisms and targeting with inhibitors and drugs is an active area of research that could offer a promising avenue for treatment and a better understanding of molecular therapeutic interventions.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.