Zhen Wang, Jianing Wei, Yuyu Song, Yuting Li, Yin Wu, Robert Chen, Zhen Wang, Jian Zhang, Xiaoyin Tan, Ke Liu
{"title":"Role of right dorsolateral prefrontal cortex-left primary motor cortex interaction in motor inhibition in Parkinson's disease.","authors":"Zhen Wang, Jianing Wei, Yuyu Song, Yuting Li, Yin Wu, Robert Chen, Zhen Wang, Jian Zhang, Xiaoyin Tan, Ke Liu","doi":"10.3389/fnagi.2025.1524755","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Impaired motor inhibition in Parkinson's disease (PD) is associated with functional alterations in the frontal-basal ganglia (BG) neural circuits. The right dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (pre-SMA), and primary motor cortex (M1) play key roles in regulating this inhibition. However, the changes in interhemispheric interactions during motor inhibition in PD have not been clearly defined.</p><p><strong>Methods: </strong>We used dual-site paired-pulse transcranial magnetic stimulation (ppTMS) to examine the interactions between the right DLPFC and pre-SMA and the left M1 in 30 patients with early-stage PD and 30 age-matched healthy controls (HC) during both resting and active conditions, specifically while performing a stop-signal task (SST).</p><p><strong>Results: </strong>Stop-signal reaction times (SSRT) were significantly longer in PD patients compared to HC. The right DLPFC-left M1 interaction, at both short- and long-latency intervals, showed enhanced inhibition in PD following the stop-signal. In PD patients, SSRT was correlated with the inhibition of the right DLPFC-left M1 interaction, with stronger inhibition associated with shorter SSRT.</p><p><strong>Conclusion: </strong>The deficit in reactive inhibition observed in PD is linked to an abnormal modulation of the right DLPFC-left M1 interaction during the stopping process.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1524755"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1524755","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Impaired motor inhibition in Parkinson's disease (PD) is associated with functional alterations in the frontal-basal ganglia (BG) neural circuits. The right dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (pre-SMA), and primary motor cortex (M1) play key roles in regulating this inhibition. However, the changes in interhemispheric interactions during motor inhibition in PD have not been clearly defined.
Methods: We used dual-site paired-pulse transcranial magnetic stimulation (ppTMS) to examine the interactions between the right DLPFC and pre-SMA and the left M1 in 30 patients with early-stage PD and 30 age-matched healthy controls (HC) during both resting and active conditions, specifically while performing a stop-signal task (SST).
Results: Stop-signal reaction times (SSRT) were significantly longer in PD patients compared to HC. The right DLPFC-left M1 interaction, at both short- and long-latency intervals, showed enhanced inhibition in PD following the stop-signal. In PD patients, SSRT was correlated with the inhibition of the right DLPFC-left M1 interaction, with stronger inhibition associated with shorter SSRT.
Conclusion: The deficit in reactive inhibition observed in PD is linked to an abnormal modulation of the right DLPFC-left M1 interaction during the stopping process.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.