Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention With Machine Learning: Population-Based, External, and Diagnostic Validation Study.

IF 3.5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH JMIR Public Health and Surveillance Pub Date : 2025-03-19 DOI:10.2196/67840
Zhen Lu, Binhua Dong, Hongning Cai, Tian Tian, Junfeng Wang, Leiwen Fu, Bingyi Wang, Weijie Zhang, Shaomei Lin, Xunyuan Tuo, Juntao Wang, Tianjie Yang, Xinxin Huang, Zheng Zheng, Huifeng Xue, Shuxia Xu, Siyang Liu, Pengming Sun, Huachun Zou
{"title":"Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention With Machine Learning: Population-Based, External, and Diagnostic Validation Study.","authors":"Zhen Lu, Binhua Dong, Hongning Cai, Tian Tian, Junfeng Wang, Leiwen Fu, Bingyi Wang, Weijie Zhang, Shaomei Lin, Xunyuan Tuo, Juntao Wang, Tianjie Yang, Xinxin Huang, Zheng Zheng, Huifeng Xue, Shuxia Xu, Siyang Liu, Pengming Sun, Huachun Zou","doi":"10.2196/67840","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer remains a major global health issue. Personalized, data-driven cervical cancer prevention (CCP) strategies tailored to phenotypic profiles may improve prevention and reduce disease burden.</p><p><strong>Objective: </strong>This study aimed to identify subgroups with differential cervical precancer or cancer risks using machine learning, validate subgroup predictions across datasets, and propose a computational phenomapping strategy to enhance global CCP efforts.</p><p><strong>Methods: </strong>We explored the data-driven CCP subgroups by applying unsupervised machine learning to a deeply phenotyped, population-based discovery cohort. We extracted CCP-specific risks of cervical intraepithelial neoplasia (CIN) and cervical cancer through weighted logistic regression analyses providing odds ratio (OR) estimates and 95% CIs. We trained a supervised machine learning model and developed pathways to classify individuals before evaluating its diagnostic validity and usability on an external cohort.</p><p><strong>Results: </strong>This study included 551,934 women (median age, 49 years) in the discovery cohort and 47,130 women (median age, 37 years) in the external cohort. Phenotyping identified 5 CCP subgroups, with CCP4 showing the highest carcinoma prevalence. CCP2-4 had significantly higher risks of CIN2+ (CCP2: OR 2.07 [95% CI: 2.03-2.12], CCP3: 3.88 [3.78-3.97], and CCP4: 4.47 [4.33-4.63]) and CIN3+ (CCP2: 2.10 [2.05-2.14], CCP3: 3.92 [3.82-4.02], and CCP4: 4.45 [4.31-4.61]) compared to CCP1 (P<.001), consistent with the direction of results observed in the external cohort. The proposed triple strategy was validated as clinically relevant, prioritizing high-risk subgroups (CCP3-4) for colposcopies and scaling human papillomavirus screening for CCP1-2.</p><p><strong>Conclusions: </strong>This study underscores the potential of leveraging machine learning algorithms and large-scale routine electronic health records to enhance CCP strategies. By identifying key determinants of CIN2+/CIN3+ risk and classifying 5 distinct subgroups, our study provides a robust, data-driven foundation for the proposed triple strategy. This approach prioritizes tailored prevention efforts for subgroups with varying risks, offering a novel and scalable tool to complement existing cervical cancer screening guidelines. Future work should focus on independent external and prospective validation to maximize the global impact of this strategy.</p>","PeriodicalId":14765,"journal":{"name":"JMIR Public Health and Surveillance","volume":"11 ","pages":"e67840"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Public Health and Surveillance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/67840","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cervical cancer remains a major global health issue. Personalized, data-driven cervical cancer prevention (CCP) strategies tailored to phenotypic profiles may improve prevention and reduce disease burden.

Objective: This study aimed to identify subgroups with differential cervical precancer or cancer risks using machine learning, validate subgroup predictions across datasets, and propose a computational phenomapping strategy to enhance global CCP efforts.

Methods: We explored the data-driven CCP subgroups by applying unsupervised machine learning to a deeply phenotyped, population-based discovery cohort. We extracted CCP-specific risks of cervical intraepithelial neoplasia (CIN) and cervical cancer through weighted logistic regression analyses providing odds ratio (OR) estimates and 95% CIs. We trained a supervised machine learning model and developed pathways to classify individuals before evaluating its diagnostic validity and usability on an external cohort.

Results: This study included 551,934 women (median age, 49 years) in the discovery cohort and 47,130 women (median age, 37 years) in the external cohort. Phenotyping identified 5 CCP subgroups, with CCP4 showing the highest carcinoma prevalence. CCP2-4 had significantly higher risks of CIN2+ (CCP2: OR 2.07 [95% CI: 2.03-2.12], CCP3: 3.88 [3.78-3.97], and CCP4: 4.47 [4.33-4.63]) and CIN3+ (CCP2: 2.10 [2.05-2.14], CCP3: 3.92 [3.82-4.02], and CCP4: 4.45 [4.31-4.61]) compared to CCP1 (P<.001), consistent with the direction of results observed in the external cohort. The proposed triple strategy was validated as clinically relevant, prioritizing high-risk subgroups (CCP3-4) for colposcopies and scaling human papillomavirus screening for CCP1-2.

Conclusions: This study underscores the potential of leveraging machine learning algorithms and large-scale routine electronic health records to enhance CCP strategies. By identifying key determinants of CIN2+/CIN3+ risk and classifying 5 distinct subgroups, our study provides a robust, data-driven foundation for the proposed triple strategy. This approach prioritizes tailored prevention efforts for subgroups with varying risks, offering a novel and scalable tool to complement existing cervical cancer screening guidelines. Future work should focus on independent external and prospective validation to maximize the global impact of this strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.70
自引率
2.40%
发文量
136
审稿时长
12 weeks
期刊介绍: JMIR Public Health & Surveillance (JPHS) is a renowned scholarly journal indexed on PubMed. It follows a rigorous peer-review process and covers a wide range of disciplines. The journal distinguishes itself by its unique focus on the intersection of technology and innovation in the field of public health. JPHS delves into diverse topics such as public health informatics, surveillance systems, rapid reports, participatory epidemiology, infodemiology, infoveillance, digital disease detection, digital epidemiology, electronic public health interventions, mass media and social media campaigns, health communication, and emerging population health analysis systems and tools.
期刊最新文献
Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention With Machine Learning: Population-Based, External, and Diagnostic Validation Study. Alternative Presentations of Overall and Statistical Uncertainty for Adults' Understanding of the Results of a Randomized Trial of a Public Health Intervention: Parallel Web-Based Randomized Trials. COVID-19 Testing Equity in New York City During the First 2 Years of the Pandemic: Demographic Analysis of Free Testing Data. Migrant-Local Differences in the Relationship Between Oral Health, Social Support, and Loneliness Among Older Adults in Weifang, China: Cross-Sectional Study. Monitoring Public Health Through a Comprehensive Primary Care Database in the Netherlands: Overview of the Nivel Syndromic Surveillance System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1