NAT10 promotes radiotherapy resistance in non-small cell lung cancer by regulating KPNB1-mediated PD-L1 nuclear translocation.

IF 1.7 4区 生物学 Q3 BIOLOGY Open Life Sciences Pub Date : 2025-03-18 eCollection Date: 2025-01-01 DOI:10.1515/biol-2025-1065
Dagao Zhu, Mingliang Lu, Hongmin Cheng
{"title":"NAT10 promotes radiotherapy resistance in non-small cell lung cancer by regulating KPNB1-mediated PD-L1 nuclear translocation.","authors":"Dagao Zhu, Mingliang Lu, Hongmin Cheng","doi":"10.1515/biol-2025-1065","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy (RT) resistance in non-small cell lung cancer (NSCLC) is a significant contributor to tumor recurrence. NAT10, an enzyme that catalyzes ac4C RNA modification, has an unclear role in RT resistance. This study aimed to explore the function of NAT10 in RT resistance in NSCLC. RT-resistant NSCLC cell lines (PC9R and A549R) were established through repeated irradiation. The impact of NAT10 on cellular immunity was evaluated by measuring immune cell populations, cytotoxicity levels, and markers of cell dysfunction. Results demonstrated elevated levels of ac4C and NAT10 in RT-resistant cells. Knockdown of NAT10 suppressed cell proliferation and enhanced immune function in PC9R and A549R cells by upregulating TNF-α and IFN-γ while downregulating PD-1 and TIM-3. Mechanistically, RT resistance in NSCLC was mediated by NAT10-dependent ac4C modification of KPNB1. Furthermore, KPNB1 facilitated PD-L1 nuclear translocation, promoting immune escape in RT-resistant NSCLC cells. Overexpression of KPNB1 enhanced cell proliferation but impaired immune function in RT-resistant NSCLC cells. In conclusion, this study demonstrates that NAT10 upregulates KPNB1 expression through ac4C modification, thereby promoting RT resistance in NSCLC via PD-L1 nuclear translocation. These findings reveal a novel mechanism underlying RT resistance in NSCLC.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20251065"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2025-1065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy (RT) resistance in non-small cell lung cancer (NSCLC) is a significant contributor to tumor recurrence. NAT10, an enzyme that catalyzes ac4C RNA modification, has an unclear role in RT resistance. This study aimed to explore the function of NAT10 in RT resistance in NSCLC. RT-resistant NSCLC cell lines (PC9R and A549R) were established through repeated irradiation. The impact of NAT10 on cellular immunity was evaluated by measuring immune cell populations, cytotoxicity levels, and markers of cell dysfunction. Results demonstrated elevated levels of ac4C and NAT10 in RT-resistant cells. Knockdown of NAT10 suppressed cell proliferation and enhanced immune function in PC9R and A549R cells by upregulating TNF-α and IFN-γ while downregulating PD-1 and TIM-3. Mechanistically, RT resistance in NSCLC was mediated by NAT10-dependent ac4C modification of KPNB1. Furthermore, KPNB1 facilitated PD-L1 nuclear translocation, promoting immune escape in RT-resistant NSCLC cells. Overexpression of KPNB1 enhanced cell proliferation but impaired immune function in RT-resistant NSCLC cells. In conclusion, this study demonstrates that NAT10 upregulates KPNB1 expression through ac4C modification, thereby promoting RT resistance in NSCLC via PD-L1 nuclear translocation. These findings reveal a novel mechanism underlying RT resistance in NSCLC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
4.50%
发文量
131
审稿时长
43 weeks
期刊介绍: Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.
期刊最新文献
Impact of hyaluronic acid-modified hafnium metalorganic frameworks containing rhynchophylline on Alzheimer's disease. NAT10 promotes radiotherapy resistance in non-small cell lung cancer by regulating KPNB1-mediated PD-L1 nuclear translocation. The complete mitochondrial genome analysis of Haemaphysalis hystricis Supino, 1897 (Ixodida: Ixodidae) and its phylogenetic implications. Application of metagenomic next-generation sequencing in the diagnosis of pathogens in patients with diabetes complicated by community-acquired pneumonia. Short-chain fatty acid attenuates intestinal inflammation by regulation of gut microbial composition in antibiotic-associated diarrhea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1