{"title":"Establishment and characterization of novel patient-derived esophageal tumoroids with long-term cultivability.","authors":"Takashi Urano, Etsuko Yokota, Miki Iwai, Takuro Yukawa, Yoshio Naomoto, Nagio Takigawa, Hideyo Fujiwara, Takashi Akiyama, Minoru Haisa, Takuya Fukazawa, Tomoki Yamatsuji","doi":"10.1007/s13577-025-01206-x","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal cancer is an aggressive and fatal disease classified into two distinct histologic types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). To develop novel therapeutic strategies, it is important to establish preclinical models of esophageal carcinoma. In this study, we successfully established three types of human esophageal cancer organoids (tumoroids) from surgical specimens for long-term culture. Two of the tumoroids were derived from ESCC and one from EAC, which arose from Barrett's esophagus. Whole-exome sequencing revealed that the tumoroids inherited genetic mutations from the parental tumors and patient-derived tumor xenografts closely mimicked the pathology of the original esophageal cancers. In addition to whole-exome analysis, copy number and immunohistochemical analyses demonstrated HER2 expression and amplification as well as HER3 expression and mutation in esophageal tumoroids derived from adenocarcinoma in Barrett's esophagus. HER2-targeting antibody-drug conjugates (ADCs), trastuzumab deruxtecan (T-DXd), and patritumab deruxtecan (P-DXd) effectively suppressed the viability of the tumoroids. Therefore, the establishment of esophageal tumoroids with long-term cultivability makes it possible to obtain reproducible basic data, including drug sensitivity studies, which are important for the development of personalized therapies and treatment strategies.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 3","pages":"72"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01206-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal cancer is an aggressive and fatal disease classified into two distinct histologic types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). To develop novel therapeutic strategies, it is important to establish preclinical models of esophageal carcinoma. In this study, we successfully established three types of human esophageal cancer organoids (tumoroids) from surgical specimens for long-term culture. Two of the tumoroids were derived from ESCC and one from EAC, which arose from Barrett's esophagus. Whole-exome sequencing revealed that the tumoroids inherited genetic mutations from the parental tumors and patient-derived tumor xenografts closely mimicked the pathology of the original esophageal cancers. In addition to whole-exome analysis, copy number and immunohistochemical analyses demonstrated HER2 expression and amplification as well as HER3 expression and mutation in esophageal tumoroids derived from adenocarcinoma in Barrett's esophagus. HER2-targeting antibody-drug conjugates (ADCs), trastuzumab deruxtecan (T-DXd), and patritumab deruxtecan (P-DXd) effectively suppressed the viability of the tumoroids. Therefore, the establishment of esophageal tumoroids with long-term cultivability makes it possible to obtain reproducible basic data, including drug sensitivity studies, which are important for the development of personalized therapies and treatment strategies.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.