Anna Belyaeva, Kseniya Perepelina, Evdokia Kuznetsova, Daria Smirnova, Tatyana Yakovleva, Victoria Turilova, Irina Neganova, Alla Shatrova, Yuliya Fomicheva, Olga Peregudina, Elena Vasichkina, Anna Kostareva, Anna Malashicheva
{"title":"Generation of iPSCs line from patient with Singleton-Merten syndrome.","authors":"Anna Belyaeva, Kseniya Perepelina, Evdokia Kuznetsova, Daria Smirnova, Tatyana Yakovleva, Victoria Turilova, Irina Neganova, Alla Shatrova, Yuliya Fomicheva, Olga Peregudina, Elena Vasichkina, Anna Kostareva, Anna Malashicheva","doi":"10.1007/s13577-025-01203-0","DOIUrl":null,"url":null,"abstract":"<p><p>Singleton-Merten syndrome (SMS) is a rare genetic condition associated with abnormal calcification and skeletal anomalies. To explore the underlying mechanisms of this disorder, we generated induced pluripotent stem cells (iPSCs) from the blood cells of a patient with SMS. The iPSCs retain the genetic mutation linked to the syndrome, making them a relevant model for studying disease-specific processes. These cells display all key features of pluripotent stem cells, including the expression of characteristic markers, the ability to differentiate into cell types from all three germ layers, and stable growth during passaging. These iPSCs provide a valuable tool for investigating the processes involved in SMS, particularly those leading to abnormal calcification. They also offer a platform for testing potential therapeutic strategies aimed at addressing SMS-related complications. Future work will focus on directing these cells into specific cell types to better understand the pathways involved in the disease and identify possible treatment targets. This study highlights the potential of patient-derived iPSCs for advancing research into rare genetic disorders.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 3","pages":"71"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01203-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Singleton-Merten syndrome (SMS) is a rare genetic condition associated with abnormal calcification and skeletal anomalies. To explore the underlying mechanisms of this disorder, we generated induced pluripotent stem cells (iPSCs) from the blood cells of a patient with SMS. The iPSCs retain the genetic mutation linked to the syndrome, making them a relevant model for studying disease-specific processes. These cells display all key features of pluripotent stem cells, including the expression of characteristic markers, the ability to differentiate into cell types from all three germ layers, and stable growth during passaging. These iPSCs provide a valuable tool for investigating the processes involved in SMS, particularly those leading to abnormal calcification. They also offer a platform for testing potential therapeutic strategies aimed at addressing SMS-related complications. Future work will focus on directing these cells into specific cell types to better understand the pathways involved in the disease and identify possible treatment targets. This study highlights the potential of patient-derived iPSCs for advancing research into rare genetic disorders.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.