The complete absence of cytoplasmic γ-actin results in no discernible phenotype in mice or primary fibroblasts.

Lauren J Sundby, Katelin M Hawbaker, Jacob Powers, William M Southern, Erynn E Johnson, Xiaobai Patrinostro, Benjamin J Perrin, James M Ervasti
{"title":"The complete absence of cytoplasmic γ-actin results in no discernible phenotype in mice or primary fibroblasts.","authors":"Lauren J Sundby, Katelin M Hawbaker, Jacob Powers, William M Southern, Erynn E Johnson, Xiaobai Patrinostro, Benjamin J Perrin, James M Ervasti","doi":"10.1111/febs.70075","DOIUrl":null,"url":null,"abstract":"<p><p>Mice and primary fibroblasts derived from mouse embryos completely lacking cytoplasmic β-actin, because the Actb gene was engineered to instead express γ-actin protein, have previously been found to be virtually devoid of phenotype. Here, we report the characterization of mice and mouse embryonic fibroblasts homozygous for an Actg1 allele edited to translate β-actin instead of γ-actin (Actg1-coding beta; Actg1<sup>c-b/c-b</sup>), which resulted in mice and fibroblasts that are devoid of γ-actin. We demonstrate that these Actg1<sup>c-b/c-b</sup> mice present with no measurable phenotype in survival, body mass, activity, muscle contractility, or auditory function. Primary fibroblasts derived from Actg1<sup>c-b/c-b</sup> mouse embryos were still proliferative, with several measured parameters of cell motility not different from wild type. From these and previous data, we conclude that β- and γ-actin proteins are redundant in primary embryonic fibroblasts and during normal mouse development.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mice and primary fibroblasts derived from mouse embryos completely lacking cytoplasmic β-actin, because the Actb gene was engineered to instead express γ-actin protein, have previously been found to be virtually devoid of phenotype. Here, we report the characterization of mice and mouse embryonic fibroblasts homozygous for an Actg1 allele edited to translate β-actin instead of γ-actin (Actg1-coding beta; Actg1c-b/c-b), which resulted in mice and fibroblasts that are devoid of γ-actin. We demonstrate that these Actg1c-b/c-b mice present with no measurable phenotype in survival, body mass, activity, muscle contractility, or auditory function. Primary fibroblasts derived from Actg1c-b/c-b mouse embryos were still proliferative, with several measured parameters of cell motility not different from wild type. From these and previous data, we conclude that β- and γ-actin proteins are redundant in primary embryonic fibroblasts and during normal mouse development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The complete absence of cytoplasmic γ-actin results in no discernible phenotype in mice or primary fibroblasts. Estrogen in the brain - neuroestrogens can regulate appetite and influence body weight. The N6-methyladenosine reader IGF2BP3 promotes bladder cancer progression through enhancing HSP90AB1 expression. Correction. Enhancing therapeutic efficacy through degradation of endogenous extracellular matrix in primary breast tumor spheroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1