Longlong Tu, Xing Fang, Yongjie Yang, Meng Yu, Hailan Liu, Hesong Liu, Na Yin, Jonathan C. Bean, Kristine M. Conde, Mengjie Wang, Yongxiang Li, Olivia Z. Ginnard, Qingzhuo Liu, Yuhan Shi, Junying Han, Yi Zhu, Makoto Fukuda, Qingchun Tong, Benjamin Arenkiel, Mingshan Xue, Yang He, Chunmei Wang, Yong Xu
{"title":"Vestibular neurons link motion sickness, behavioural thermoregulation and metabolic balance in mice","authors":"Longlong Tu, Xing Fang, Yongjie Yang, Meng Yu, Hailan Liu, Hesong Liu, Na Yin, Jonathan C. Bean, Kristine M. Conde, Mengjie Wang, Yongxiang Li, Olivia Z. Ginnard, Qingzhuo Liu, Yuhan Shi, Junying Han, Yi Zhu, Makoto Fukuda, Qingchun Tong, Benjamin Arenkiel, Mingshan Xue, Yang He, Chunmei Wang, Yong Xu","doi":"10.1038/s42255-025-01234-9","DOIUrl":null,"url":null,"abstract":"<p>Motion sickness is associated with thermoregulation and metabolic control, but the underlying neural circuitry remains largely unknown. Here we show that neurons in the medial vestibular nuclei parvocellular part (MVePC) mediate the hypothermic responses induced by motion. Reactivation of motion-sensitive MVePC neurons recapitulates motion sickness in mice. We show that motion-activated neurons in the MVePC are glutamatergic (MVePC<sup>Glu</sup>), and that optogenetic stimulation of MVePC<sup>Glu</sup> neurons mimics motion-induced hypothermia by signalling to the lateral parabrachial nucleus (LPBN). Acute inhibition of MVePC-LPBN circuitry abrogates motion-induced hypothermia. Finally, we show that chronic inhibition of MVePC<sup>Glu</sup> neurons prevents diet-induced obesity and improves glucose homeostasis without suppressing food intake. Overall, these findings highlight MVePC<sup>Glu</sup> neurons as a potential target for motion-sickness treatment and obesity control.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"24 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-025-01234-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Motion sickness is associated with thermoregulation and metabolic control, but the underlying neural circuitry remains largely unknown. Here we show that neurons in the medial vestibular nuclei parvocellular part (MVePC) mediate the hypothermic responses induced by motion. Reactivation of motion-sensitive MVePC neurons recapitulates motion sickness in mice. We show that motion-activated neurons in the MVePC are glutamatergic (MVePCGlu), and that optogenetic stimulation of MVePCGlu neurons mimics motion-induced hypothermia by signalling to the lateral parabrachial nucleus (LPBN). Acute inhibition of MVePC-LPBN circuitry abrogates motion-induced hypothermia. Finally, we show that chronic inhibition of MVePCGlu neurons prevents diet-induced obesity and improves glucose homeostasis without suppressing food intake. Overall, these findings highlight MVePCGlu neurons as a potential target for motion-sickness treatment and obesity control.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.