Guard Cell‐Specific Metabolic Responses to Drought Stress in Maize

IF 3.7 2区 农林科学 Q1 AGRONOMY Journal of Agronomy and Crop Science Pub Date : 2025-03-20 DOI:10.1111/jac.70049
Patrick Pascal Lehr, Alexander Erban, Roman Paul Hartwig, Monika Andrea Wimmer, Joachim Kopka, Christian Zörb
{"title":"Guard Cell‐Specific Metabolic Responses to Drought Stress in Maize","authors":"Patrick Pascal Lehr, Alexander Erban, Roman Paul Hartwig, Monika Andrea Wimmer, Joachim Kopka, Christian Zörb","doi":"10.1111/jac.70049","DOIUrl":null,"url":null,"abstract":"Understanding crop responses to drought stress is crucial for securing future agricultural productivity. Guard cells regulate transpiration and thus the yield burden under drought conditions. Therefore, the influence of repeated drought stress on the guard cell metabolome of <jats:styled-content style=\"fixed-case\"><jats:italic>Zea mays</jats:italic></jats:styled-content> L. was investigated to improve our understanding of crop resilience mechanisms. A controlled greenhouse experiment with physiological evaluation and a non‐targeted metabolomics approach was used to analyse unprimed and primed guard cells. Primed and unprimed maize plants showed similar overall physiological and metabolic responses to drought, with gas exchange and general metabolic patterns largely unaffected by priming. However, distinct priming effects emerged in specific metabolites. Metabolites of the alanine and aspartate pathway, as well as those of the glycine, serine and threonine pathway were less impacted by drought stress in guard cells than in mesophyll cells, suggesting the emphasis of plants to maintain stable guard cell metabolomes for functional integrity. In contrast, the increase in sugar concentrations in guard cells was similar to that in mesophyll cells, suggesting a pivotal role of sugars in guard cells during drought conditions. New insights into cell type‐specific metabolic responses to drought stress will contribute to a better understanding of stress memory in maize. Enhancing guard cell resilience could help optimise water use efficiency for sustainable agricultural production under climate change conditions.","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"26 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jac.70049","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding crop responses to drought stress is crucial for securing future agricultural productivity. Guard cells regulate transpiration and thus the yield burden under drought conditions. Therefore, the influence of repeated drought stress on the guard cell metabolome of Zea mays L. was investigated to improve our understanding of crop resilience mechanisms. A controlled greenhouse experiment with physiological evaluation and a non‐targeted metabolomics approach was used to analyse unprimed and primed guard cells. Primed and unprimed maize plants showed similar overall physiological and metabolic responses to drought, with gas exchange and general metabolic patterns largely unaffected by priming. However, distinct priming effects emerged in specific metabolites. Metabolites of the alanine and aspartate pathway, as well as those of the glycine, serine and threonine pathway were less impacted by drought stress in guard cells than in mesophyll cells, suggesting the emphasis of plants to maintain stable guard cell metabolomes for functional integrity. In contrast, the increase in sugar concentrations in guard cells was similar to that in mesophyll cells, suggesting a pivotal role of sugars in guard cells during drought conditions. New insights into cell type‐specific metabolic responses to drought stress will contribute to a better understanding of stress memory in maize. Enhancing guard cell resilience could help optimise water use efficiency for sustainable agricultural production under climate change conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agronomy and Crop Science
Journal of Agronomy and Crop Science 农林科学-农艺学
CiteScore
8.20
自引率
5.70%
发文量
54
审稿时长
7.8 months
期刊介绍: The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.
期刊最新文献
Screening and Microcapsule Preparation of Dark Septate Endophytes for Increasing Wheat Yield Under Drought Conditions Guard Cell‐Specific Metabolic Responses to Drought Stress in Maize Physiological Responses of Sunflower (Helianthus annuus L.) to Multiple Combined Prolonged Drought Stress, Salinity Stress and Boron Toxicity: Insights from Pre‐ and Post‐Recovery Stages Monitoring Maize Growth Using a Model for Objective Weight Assignment Based on Multispectral Data From UAV Beyond Energy: How Small-Molecule Sugars Fuel Seed Life and Shape Next-Generation Crop Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1