Novel MoS2/BaSO4/zeolite heterostructure composite for the enhanced visible-light photocatalytic degradation of sulfadiazine

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2025-03-21 DOI:10.1038/s41545-025-00455-5
Yi Chen, Yue Jin, Honglin Zhu, Haolan Zhang, Luyu Wei, Yan Tang, Rui Wang, Dayu Zhou, Jinchuan Gu
{"title":"Novel MoS2/BaSO4/zeolite heterostructure composite for the enhanced visible-light photocatalytic degradation of sulfadiazine","authors":"Yi Chen, Yue Jin, Honglin Zhu, Haolan Zhang, Luyu Wei, Yan Tang, Rui Wang, Dayu Zhou, Jinchuan Gu","doi":"10.1038/s41545-025-00455-5","DOIUrl":null,"url":null,"abstract":"<p>Molybdenum disulfide (MoS<sub>2</sub>) can be used as a potential photocatalyst for the removal of emerging contaminants (ECs) under visible light (Vis). However, the high carrier recombination rate and aggregation restrict pure MoS<sub>2</sub> application. The hydrothermal method was used to prepare a novel MoS<sub>2</sub>/BaSO<sub>4</sub>/zeolite (Z) composite (MBZ), which was used to activate peroxymonosulfate (PMS) under visible light for sulfadiazine (SDZ) degradation. The MBZ showed a moderate <i>E</i><sub><i>g</i></sub> value (2.59 eV), indicating good visible-light absorption. The physicochemical and photoelectrochemical properties were analyzed, revealing that the hybrid MBZ significantly enhanced photoinduced carrier generation, separation, and transfer. The MBZ exhibited 2.38-, 3.24-, and 1.36-fold higher SDZ removal reaction rates than Z, BaSO<sub>4</sub>, and MoS<sub>2</sub> in the PMS/Vis system. The addition of EDTA-2Na notably decreased the degradation rate (79.58–89.88%), indicating the significant role of <i>h</i><sup><i>+</i></sup>. This work provides a new approach to the design of semiconductor/insulator photocatalysts and constructs a promising catalytic oxidation system for the green remediation of EC wastewater.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"49 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00455-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum disulfide (MoS2) can be used as a potential photocatalyst for the removal of emerging contaminants (ECs) under visible light (Vis). However, the high carrier recombination rate and aggregation restrict pure MoS2 application. The hydrothermal method was used to prepare a novel MoS2/BaSO4/zeolite (Z) composite (MBZ), which was used to activate peroxymonosulfate (PMS) under visible light for sulfadiazine (SDZ) degradation. The MBZ showed a moderate Eg value (2.59 eV), indicating good visible-light absorption. The physicochemical and photoelectrochemical properties were analyzed, revealing that the hybrid MBZ significantly enhanced photoinduced carrier generation, separation, and transfer. The MBZ exhibited 2.38-, 3.24-, and 1.36-fold higher SDZ removal reaction rates than Z, BaSO4, and MoS2 in the PMS/Vis system. The addition of EDTA-2Na notably decreased the degradation rate (79.58–89.88%), indicating the significant role of h+. This work provides a new approach to the design of semiconductor/insulator photocatalysts and constructs a promising catalytic oxidation system for the green remediation of EC wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Novel MoS2/BaSO4/zeolite heterostructure composite for the enhanced visible-light photocatalytic degradation of sulfadiazine Highly stretchable TPU/g-C3N4 composite nanofiber film for enhancing the piezo-photocatalytic sewage treatment by electrospinning-induced pretension Research on the filtration efficiency and influencing factors of pontoon mesh rotary filters for micro-sprinkler irrigation Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion Preparation of unsaturated MIL-101(Cr) with Lewis acid sites for the extraordinary adsorption of anionic dyes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1