{"title":"Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling","authors":"Huimin Yi, Chenyi Wang, Baoxin Ge, Fangjie Xu, Pengyang Jiang, Min Zhou, Fangshu Xing, Caijin Huang","doi":"10.1002/smll.202500253","DOIUrl":null,"url":null,"abstract":"Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (H<sub>ads</sub>) migrate from adjacent Cu sites to active S atoms, promoting H<sub>2</sub> production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H<sub>2</sub> production rate of 7400 µmol g<sup>−1</sup> h<sup>−1</sup>. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.","PeriodicalId":228,"journal":{"name":"Small","volume":"37 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202500253","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (Hads) migrate from adjacent Cu sites to active S atoms, promoting H2 production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H2 production rate of 7400 µmol g−1 h−1. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.