{"title":"Pt-Skin Coated PtNi Alloy in Carbon Nanoshells for Enhanced Hydrogen Evolution Activity and Durability","authors":"Yuandong Yang, Jie Liu, Chen Sun, Yuting Fu, Qipeng Li, Jinjie Qian","doi":"10.1002/smll.202503294","DOIUrl":null,"url":null,"abstract":"Hydrogen, as an environmentally sustainable energy carrier, offers substantial potential for addressing the global energy crisis. The development of highly efficient catalysts to accelerate the hydrogen evolution reaction (HER) is critical for the realization of electrochemical hydrogen production via water splitting. Herein, a novel heterogeneous catalyst consisting of PtNi nanoalloys with Pt-enriched surfaces is obtained, which are uniformly distributed within nitrogen-doped hollow carbon nanoshells derived from a complex of Ni-EDTA (ethylene diamine tetraacetate). Remarkably, the fabricated NE-PtNiNC catalyst demonstrates exceptional HER performance, exhibiting an ultra-low overpotential of 3 mV at 10 mA cm<sup>−2</sup> and 6.8-fold higher mass activity compared to the commercial Pt/C catalyst, positioning it as one of the most advanced catalysts to date. Additionally, it shows outstanding stability over 200 h and exhibits promising potential for practical deployment in two-electrode water electrolysis systems. Theoretical analyses further reveal that the Pt-skin@PtNi structure, with its lowest d-band center, fosters a more pronounced overlap of the 5d electron cloud at the surface Pt sites. This interaction results in increased electron density on the Pt skin, facilitating water dissociation and significantly enhancing the intrinsic HER activity and durability.","PeriodicalId":228,"journal":{"name":"Small","volume":"22 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202503294","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen, as an environmentally sustainable energy carrier, offers substantial potential for addressing the global energy crisis. The development of highly efficient catalysts to accelerate the hydrogen evolution reaction (HER) is critical for the realization of electrochemical hydrogen production via water splitting. Herein, a novel heterogeneous catalyst consisting of PtNi nanoalloys with Pt-enriched surfaces is obtained, which are uniformly distributed within nitrogen-doped hollow carbon nanoshells derived from a complex of Ni-EDTA (ethylene diamine tetraacetate). Remarkably, the fabricated NE-PtNiNC catalyst demonstrates exceptional HER performance, exhibiting an ultra-low overpotential of 3 mV at 10 mA cm−2 and 6.8-fold higher mass activity compared to the commercial Pt/C catalyst, positioning it as one of the most advanced catalysts to date. Additionally, it shows outstanding stability over 200 h and exhibits promising potential for practical deployment in two-electrode water electrolysis systems. Theoretical analyses further reveal that the Pt-skin@PtNi structure, with its lowest d-band center, fosters a more pronounced overlap of the 5d electron cloud at the surface Pt sites. This interaction results in increased electron density on the Pt skin, facilitating water dissociation and significantly enhancing the intrinsic HER activity and durability.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.