Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-03-21 DOI:10.1002/adfm.202500714
Thi Ngoc Anh Mai, Md Shakhawath Hossain, Nhat Minh Nguyen, Yongliang Chen, Chaohao Chen, Xiaoxue Xu, Quang Thang Trinh, Toan Dinh, Toan Trong Tran
{"title":"Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications","authors":"Thi Ngoc Anh Mai, Md Shakhawath Hossain, Nhat Minh Nguyen, Yongliang Chen, Chaohao Chen, Xiaoxue Xu, Quang Thang Trinh, Toan Dinh, Toan Trong Tran","doi":"10.1002/adfm.202500714","DOIUrl":null,"url":null,"abstract":"Solid-state quantum emitters, molecular-sized complexes releasing a single photon at a time, have garnered much attention owing to their use as a key building block in various quantum technologies. Among these, quantum emitters in hexagonal boron nitride (hBN) have emerged as front runners with superior attributes compared to other competing platforms. These attributes are attainable thanks to the robust, two-dimensional (2D) lattice of the material formed by the extremely strong B─N bonds. This review discusses the fundamental properties of quantum emitters in hBN and highlights recent progress in the field. The focus is on the fabrication and engineering of these quantum emitters facilitated by state-of-the-art equipment. Strategies to integrate the quantum emitters with dielectric and plasmonic cavities to enhance their optical properties are summarized. The latest developments in new classes of spin-active defects, their predicted structural configurations, and the proposed suitable quantum applications are examined. Despite the current challenges, quantum emitters in hBN have steadily become a promising platform for applications in quantum information science.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"27 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202500714","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state quantum emitters, molecular-sized complexes releasing a single photon at a time, have garnered much attention owing to their use as a key building block in various quantum technologies. Among these, quantum emitters in hexagonal boron nitride (hBN) have emerged as front runners with superior attributes compared to other competing platforms. These attributes are attainable thanks to the robust, two-dimensional (2D) lattice of the material formed by the extremely strong B─N bonds. This review discusses the fundamental properties of quantum emitters in hBN and highlights recent progress in the field. The focus is on the fabrication and engineering of these quantum emitters facilitated by state-of-the-art equipment. Strategies to integrate the quantum emitters with dielectric and plasmonic cavities to enhance their optical properties are summarized. The latest developments in new classes of spin-active defects, their predicted structural configurations, and the proposed suitable quantum applications are examined. Despite the current challenges, quantum emitters in hBN have steadily become a promising platform for applications in quantum information science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固态量子发射器是一次释放一个光子的分子大小的复合物,由于可用作各种量子技术的关键构件而备受关注。其中,六方氮化硼(hBN)量子发射器以其优于其他竞争平台的特性成为领跑者。这些特性的实现要归功于由极强的 B─N 键形成的坚固的二维(2D)材料晶格。本综述讨论了 hBN 中量子发射器的基本特性,并重点介绍了该领域的最新进展。重点是利用最先进的设备制造和设计这些量子发射器。文章总结了将量子发射器与介电腔和等离子腔集成以增强其光学特性的策略。研究还探讨了新型自旋活性缺陷的最新发展、其预测的结构配置以及拟议的合适量子应用。尽管目前存在挑战,但氢化硼中的量子发射器已稳步成为量子信息科学中一个前景广阔的应用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Single Pair of Weyl Points Evolve From Spin Group‐Protected Nodal Line in Half‐Metallic Ferromagnet V3S4 Harnessing Mechanical Energy for Green Hydrogen: Pioneering High‐Performance Triboelectric Nanogenerators Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper Interfacial Molecule Engineering Builds Tri‐Functional Bilayer Silane Films with Hydrophobic Ion Channels for Highly Stable Zn Metal Anode The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1