In Situ Heterostructure Formation of NaSbS2 and Na2Sb4S7 for Efficient Photogenerated Charge Separation

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-03-21 DOI:10.1021/acs.chemmater.4c03281
Edita Joseph, Vaishnav Raveendran, S. Charis Caroline, Sudip K. Batabyal
{"title":"In Situ Heterostructure Formation of NaSbS2 and Na2Sb4S7 for Efficient Photogenerated Charge Separation","authors":"Edita Joseph, Vaishnav Raveendran, S. Charis Caroline, Sudip K. Batabyal","doi":"10.1021/acs.chemmater.4c03281","DOIUrl":null,"url":null,"abstract":"Sodium antimony sulfide is a recently discovered alkali metal chalcogenide that has gained considerable attention due to its enhanced efficiency, nontoxicity, and low cost as a photoabsorber. This material exists in various phases, such as NaSbS<sub>2</sub>, NaSbS, Na<sub>3</sub>SbS<sub>4</sub>, and Na<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub>, and can be obtained only by annealing at high temperatures. However, here, we report the controlled formation of two different phases of sodium antimony sulfide, NaSbS<sub>2</sub>, and a heterostructure of NaSbS<sub>2</sub>/Na<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub> achieved in a single successive ionic layer adsorption and reaction (SILAR) cycle without annealing procedures. Both phases were formed in two distinct colors, namely, orange (NaSbS<sub>2</sub>) and brown (Na<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub>/NaSbS<sub>2</sub>), and were found to be two different materials with different electronic properties. The band gaps for both phases were calculated to be 2.0 and 1.6 eV, which lies in the ideal band gap region for a solar absorber. Two photodetectors were fabricated, where both phases acted as the active layers with fluorine-doped tin oxide (FTO) and carbon as the other two electrodes. Both devices produced an outstanding photocurrent and photovoltage under zero-bias conditions, proving to work as excellent self-powered photodetectors. The devices were tested under 455, 525, 632 nm, and white light-emitting diode (LED) light illumination. The rise and fall times under light irradiation were as rapid as 380 and 480 ms for the NaSbS<sub>2</sub> device and 370 and 420 ms for the Na<sub>2</sub>Sb<sub>4</sub>S<sub>7</sub>/NaSbS<sub>2</sub> device, respectively. The responsivity and detectivity for both the photodetectors at low intensities were found to be 0.89 and 3.5 mA/W and 8.8 × 10<sup>9</sup> and 4.7 × 10<sup>10</sup> Jones, respectively.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"183 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03281","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium antimony sulfide is a recently discovered alkali metal chalcogenide that has gained considerable attention due to its enhanced efficiency, nontoxicity, and low cost as a photoabsorber. This material exists in various phases, such as NaSbS2, NaSbS, Na3SbS4, and Na2Sb4S7, and can be obtained only by annealing at high temperatures. However, here, we report the controlled formation of two different phases of sodium antimony sulfide, NaSbS2, and a heterostructure of NaSbS2/Na2Sb4S7 achieved in a single successive ionic layer adsorption and reaction (SILAR) cycle without annealing procedures. Both phases were formed in two distinct colors, namely, orange (NaSbS2) and brown (Na2Sb4S7/NaSbS2), and were found to be two different materials with different electronic properties. The band gaps for both phases were calculated to be 2.0 and 1.6 eV, which lies in the ideal band gap region for a solar absorber. Two photodetectors were fabricated, where both phases acted as the active layers with fluorine-doped tin oxide (FTO) and carbon as the other two electrodes. Both devices produced an outstanding photocurrent and photovoltage under zero-bias conditions, proving to work as excellent self-powered photodetectors. The devices were tested under 455, 525, 632 nm, and white light-emitting diode (LED) light illumination. The rise and fall times under light irradiation were as rapid as 380 and 480 ms for the NaSbS2 device and 370 and 420 ms for the Na2Sb4S7/NaSbS2 device, respectively. The responsivity and detectivity for both the photodetectors at low intensities were found to be 0.89 and 3.5 mA/W and 8.8 × 109 and 4.7 × 1010 Jones, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
In Situ Heterostructure Formation of NaSbS2 and Na2Sb4S7 for Efficient Photogenerated Charge Separation High-Pressure Phase Transition of Metastable Wurtzite-Like CuInSe2 Nanocrystals Symmetry over Chemistry: Harmonic Generation of Low-Dimensional Alkali Chalcopnictates RbMP2S6 (M = Sb, Bi) Boosting the Thermoelectric Properties of Textured BiSbSe3 via Versatile CuI Compositing Thiol–Ene Click Chemistry for Functionalizing Silica-Overcoated Gold Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1