Shinhyo Bang, Juejing Liu, Bipeng Wang, Carlos Mora Perez, Ting-Ran Liu, Kyle D. Crans, Zhaohong Sun, Andrew Strzelecki, Oleg V. Prezhdo, Yu-Tsun Shao, Xiaofeng Guo, Richard L. Brutchey
{"title":"High-Pressure Phase Transition of Metastable Wurtzite-Like CuInSe2 Nanocrystals","authors":"Shinhyo Bang, Juejing Liu, Bipeng Wang, Carlos Mora Perez, Ting-Ran Liu, Kyle D. Crans, Zhaohong Sun, Andrew Strzelecki, Oleg V. Prezhdo, Yu-Tsun Shao, Xiaofeng Guo, Richard L. Brutchey","doi":"10.1021/acs.chemmater.5c00152","DOIUrl":null,"url":null,"abstract":"Ternary I–III–VI<sub>2</sub> semiconductors, such as CuInSe<sub>2</sub>, exhibit diverse polymorphs with unique structural characteristics and optoelectronic properties. This study investigates the pressure-induced phase transitions of metastable wurtzite-like CuInSe<sub>2</sub> nanocrystals. Using a combination of synchrotron X-ray diffraction, pair distribution function analysis, and density functional theory calculations, we reveal a transition from cation-ordered wurtzite-like (<i>Pmc</i>2<sub>1</sub>) to cation-disordered NaCl-like (<i>Fm</i>3̅<i>m</i>) structures at 7.7 GPa. The cation-disordered NaCl-like phase persists upon decompression. Bulk modulus calculations highlight size-dependent deviations from bulk material behavior. These findings deepen our understanding of phase stability in colloidal I–III–VI<sub>2</sub> semiconductor nanocrystals, with implications for tailoring functional materials under extreme conditions.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"12 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00152","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ternary I–III–VI2 semiconductors, such as CuInSe2, exhibit diverse polymorphs with unique structural characteristics and optoelectronic properties. This study investigates the pressure-induced phase transitions of metastable wurtzite-like CuInSe2 nanocrystals. Using a combination of synchrotron X-ray diffraction, pair distribution function analysis, and density functional theory calculations, we reveal a transition from cation-ordered wurtzite-like (Pmc21) to cation-disordered NaCl-like (Fm3̅m) structures at 7.7 GPa. The cation-disordered NaCl-like phase persists upon decompression. Bulk modulus calculations highlight size-dependent deviations from bulk material behavior. These findings deepen our understanding of phase stability in colloidal I–III–VI2 semiconductor nanocrystals, with implications for tailoring functional materials under extreme conditions.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.