{"title":"Optical Phase Conjugation of Self-Accelerating Waves","authors":"Tong Qi, Yi-Zhe Chen, Ding Yan, Xiang-Wei Wang, Wei Gao","doi":"10.1021/acsphotonics.4c02387","DOIUrl":null,"url":null,"abstract":"Self-accelerating waves have significantly advanced fundamental research and applications, particularly in optical communication, super-resolution imaging, and optical manipulation, owing to their unique curved propagation properties. Phase conjugation, serving as an essential technique for aberration correction, pulse compression, and optical computation, plays a crucial role in applications involving self-accelerating waves. Among various phase conjugation mechanisms, stimulated Brillouin scattering (SBS) mediated by light-sound interactions stands out as a promising approach. Here, we report on the phase conjugation of self-accelerating waves utilizing cross-pump-focused SBS geometry. This study demonstrates wavefront and Poynting vector reversals, achieving time-reversed propagation along diverse curved trajectories. The reversed energy flow, induced by Poynting vector conjugation, can be controlled by manipulating the original wave characteristics and propagation conditions. The distortion compensation is implemented during the propagation of self-accelerating waves through anisotropic media, demonstrating robust wavefront restoration capabilities. This proof-of-concept work opens avenues for innovative applications in structured photonics, expanding the utility of self-accelerating waves in emerging technologies.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"22 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02387","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-accelerating waves have significantly advanced fundamental research and applications, particularly in optical communication, super-resolution imaging, and optical manipulation, owing to their unique curved propagation properties. Phase conjugation, serving as an essential technique for aberration correction, pulse compression, and optical computation, plays a crucial role in applications involving self-accelerating waves. Among various phase conjugation mechanisms, stimulated Brillouin scattering (SBS) mediated by light-sound interactions stands out as a promising approach. Here, we report on the phase conjugation of self-accelerating waves utilizing cross-pump-focused SBS geometry. This study demonstrates wavefront and Poynting vector reversals, achieving time-reversed propagation along diverse curved trajectories. The reversed energy flow, induced by Poynting vector conjugation, can be controlled by manipulating the original wave characteristics and propagation conditions. The distortion compensation is implemented during the propagation of self-accelerating waves through anisotropic media, demonstrating robust wavefront restoration capabilities. This proof-of-concept work opens avenues for innovative applications in structured photonics, expanding the utility of self-accelerating waves in emerging technologies.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.