Investigation on the removal of NO from marine exhaust gas using the Na2S2O8-urea redox system in seawater carrier

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2025-03-20 DOI:10.1007/s11705-025-2533-6
Xiangwen Xing, Jingxuan Jiang, Jing Liu, Pei Zhao, Lin Cui, Yong Dong
{"title":"Investigation on the removal of NO from marine exhaust gas using the Na2S2O8-urea redox system in seawater carrier","authors":"Xiangwen Xing,&nbsp;Jingxuan Jiang,&nbsp;Jing Liu,&nbsp;Pei Zhao,&nbsp;Lin Cui,&nbsp;Yong Dong","doi":"10.1007/s11705-025-2533-6","DOIUrl":null,"url":null,"abstract":"<div><p>The sodium persulfate (Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>)-urea system has been proven to be an excellent scrubbing solution for the wet removal of NO. Commonly, seawater is used as a wet carrier in marine applications. To further explore the feasibility of marine denitrification using Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>-urea system, this study proposed the Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>-urea-seawater composite redox system for NO removal from the marine exhaust gas. The effects of seawater carrier, reaction temperature, Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> concentration, urea concentration, pH value, and NO concentration on NO removal were investigated. Additionally, the NO<sub>3</sub><sup>−</sup> concentration in the solution was measured. Results showed that the lowest normalized NO concentration was 0.099, with the corresponding mass of NO absorbed per unit volume of solution reaching 0.108 g·L<sup>−1</sup>. The addition of seawater carrier and incremental reaction temperature, Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, and urea concentration promoted the NO removal performance. When the pH value increased within the range of 4–7, the NO removal performance decreased. The NO removal performance increased as the pH value further increased to 8, but decreased again when the pH value increased to 11. An increase in NO concentration was detrimental to NO removal. The Cl<sup>−</sup>, HCO<sub>3</sub><sup>−</sup>, and CO<sub>3</sub><sup>2−</sup> in seawater could augment the total concentration of active free radicals to improve denitrification performance.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2533-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sodium persulfate (Na2S2O8)-urea system has been proven to be an excellent scrubbing solution for the wet removal of NO. Commonly, seawater is used as a wet carrier in marine applications. To further explore the feasibility of marine denitrification using Na2S2O8-urea system, this study proposed the Na2S2O8-urea-seawater composite redox system for NO removal from the marine exhaust gas. The effects of seawater carrier, reaction temperature, Na2S2O8 concentration, urea concentration, pH value, and NO concentration on NO removal were investigated. Additionally, the NO3 concentration in the solution was measured. Results showed that the lowest normalized NO concentration was 0.099, with the corresponding mass of NO absorbed per unit volume of solution reaching 0.108 g·L−1. The addition of seawater carrier and incremental reaction temperature, Na2S2O8, and urea concentration promoted the NO removal performance. When the pH value increased within the range of 4–7, the NO removal performance decreased. The NO removal performance increased as the pH value further increased to 8, but decreased again when the pH value increased to 11. An increase in NO concentration was detrimental to NO removal. The Cl, HCO3, and CO32− in seawater could augment the total concentration of active free radicals to improve denitrification performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Investigation on the removal of NO from marine exhaust gas using the Na2S2O8-urea redox system in seawater carrier Predictive neural network model and empirical equations for the physico-chemical properties and solvent characteristics of potassium carbonate solutions in carbon capture processes Nitrogen-enriched pyrolysis and catalytic pyrolysis of municipal sludge extract Preparation of TiO2@MCC modified PA6 composite membranes and their water-oil separation performance Stretchable and conductive lignin hydrogel electrolyte for flexible supercapacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1