Yu Ye, Sen Liu, Gabriele Chiogna, Chunhui Lu, Massimo Rolle
{"title":"Density Effects on Mixing in Porous Media: Multi-dimensional Flow-Through Experiments and Model-Based Interpretation","authors":"Yu Ye, Sen Liu, Gabriele Chiogna, Chunhui Lu, Massimo Rolle","doi":"10.1007/s11242-025-02161-9","DOIUrl":null,"url":null,"abstract":"<div><p>Density effects can strongly impact flow, solute transport and mixing processes in porous media. In this study, we systematically investigate and compare variable-density flow and transport in quasi two-dimensional and fully three-dimensional porous media using laboratory flow-through experiments and numerical simulations. Sodium chloride was used as conservative tracer in the experiments, with injected concentrations of 4.8 and 20 g/l, respectively. Average flow velocities of 1, 3, 9 and 27 m/d were selected to represent a wide range of advection-dominated flow conditions (Péclet number 3–100). Numerical simulations were performed to quantitatively interpret the bench-scale experiments, as well as to extend the investigation to a larger domain, allowing the analysis of the impact of a wider range of injected concentrations (0.01–65 g/l) and average flow velocities (0.5–30 m/d). Our results reveal distinct plume patterns, including fingering instabilities, sinking and secondary motion, depending on the density difference, on the average flow velocity and on the dimensionality of the system. The latter plays a key role in causing convective rolls, in the rapid sinking of the injected electrolyte plume, and in preventing the onset of fingering instabilities in the 3-D setups. The outcomes of the flow-through experiments, numerical simulations, and Shannon entropy analysis of mixing enhancement by density gradients illuminate a different mixing behavior, under distinct advection-dominated flow regimes, in quasi 2-D and fully 3-D flow-through systems.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02161-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Density effects can strongly impact flow, solute transport and mixing processes in porous media. In this study, we systematically investigate and compare variable-density flow and transport in quasi two-dimensional and fully three-dimensional porous media using laboratory flow-through experiments and numerical simulations. Sodium chloride was used as conservative tracer in the experiments, with injected concentrations of 4.8 and 20 g/l, respectively. Average flow velocities of 1, 3, 9 and 27 m/d were selected to represent a wide range of advection-dominated flow conditions (Péclet number 3–100). Numerical simulations were performed to quantitatively interpret the bench-scale experiments, as well as to extend the investigation to a larger domain, allowing the analysis of the impact of a wider range of injected concentrations (0.01–65 g/l) and average flow velocities (0.5–30 m/d). Our results reveal distinct plume patterns, including fingering instabilities, sinking and secondary motion, depending on the density difference, on the average flow velocity and on the dimensionality of the system. The latter plays a key role in causing convective rolls, in the rapid sinking of the injected electrolyte plume, and in preventing the onset of fingering instabilities in the 3-D setups. The outcomes of the flow-through experiments, numerical simulations, and Shannon entropy analysis of mixing enhancement by density gradients illuminate a different mixing behavior, under distinct advection-dominated flow regimes, in quasi 2-D and fully 3-D flow-through systems.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).