Density Effects on Mixing in Porous Media: Multi-dimensional Flow-Through Experiments and Model-Based Interpretation

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Transport in Porous Media Pub Date : 2025-03-22 DOI:10.1007/s11242-025-02161-9
Yu Ye, Sen Liu, Gabriele Chiogna, Chunhui Lu, Massimo Rolle
{"title":"Density Effects on Mixing in Porous Media: Multi-dimensional Flow-Through Experiments and Model-Based Interpretation","authors":"Yu Ye,&nbsp;Sen Liu,&nbsp;Gabriele Chiogna,&nbsp;Chunhui Lu,&nbsp;Massimo Rolle","doi":"10.1007/s11242-025-02161-9","DOIUrl":null,"url":null,"abstract":"<div><p>Density effects can strongly impact flow, solute transport and mixing processes in porous media. In this study, we systematically investigate and compare variable-density flow and transport in quasi two-dimensional and fully three-dimensional porous media using laboratory flow-through experiments and numerical simulations. Sodium chloride was used as conservative tracer in the experiments, with injected concentrations of 4.8 and 20 g/l, respectively. Average flow velocities of 1, 3, 9 and 27 m/d were selected to represent a wide range of advection-dominated flow conditions (Péclet number 3–100). Numerical simulations were performed to quantitatively interpret the bench-scale experiments, as well as to extend the investigation to a larger domain, allowing the analysis of the impact of a wider range of injected concentrations (0.01–65 g/l) and average flow velocities (0.5–30 m/d). Our results reveal distinct plume patterns, including fingering instabilities, sinking and secondary motion, depending on the density difference, on the average flow velocity and on the dimensionality of the system. The latter plays a key role in causing convective rolls, in the rapid sinking of the injected electrolyte plume, and in preventing the onset of fingering instabilities in the 3-D setups. The outcomes of the flow-through experiments, numerical simulations, and Shannon entropy analysis of mixing enhancement by density gradients illuminate a different mixing behavior, under distinct advection-dominated flow regimes, in quasi 2-D and fully 3-D flow-through systems.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02161-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Density effects can strongly impact flow, solute transport and mixing processes in porous media. In this study, we systematically investigate and compare variable-density flow and transport in quasi two-dimensional and fully three-dimensional porous media using laboratory flow-through experiments and numerical simulations. Sodium chloride was used as conservative tracer in the experiments, with injected concentrations of 4.8 and 20 g/l, respectively. Average flow velocities of 1, 3, 9 and 27 m/d were selected to represent a wide range of advection-dominated flow conditions (Péclet number 3–100). Numerical simulations were performed to quantitatively interpret the bench-scale experiments, as well as to extend the investigation to a larger domain, allowing the analysis of the impact of a wider range of injected concentrations (0.01–65 g/l) and average flow velocities (0.5–30 m/d). Our results reveal distinct plume patterns, including fingering instabilities, sinking and secondary motion, depending on the density difference, on the average flow velocity and on the dimensionality of the system. The latter plays a key role in causing convective rolls, in the rapid sinking of the injected electrolyte plume, and in preventing the onset of fingering instabilities in the 3-D setups. The outcomes of the flow-through experiments, numerical simulations, and Shannon entropy analysis of mixing enhancement by density gradients illuminate a different mixing behavior, under distinct advection-dominated flow regimes, in quasi 2-D and fully 3-D flow-through systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
期刊最新文献
Density Effects on Mixing in Porous Media: Multi-dimensional Flow-Through Experiments and Model-Based Interpretation Discrete Exterior Calculus Method for Groundwater Flow Modeling 3D Visualization of Viscous Fingering in Miscible Fluids Flow in Porous Materials Diffusion Model-Based Generation of Three-Dimensional Multiphase Pore-Scale Images Relevance of Local Dispersion on Mixing Enhancement in Engineering Injection and Extraction Systems in Porous Media: Insights from Laboratory Bench-Scale Experiments and Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1