Junyan Tang, En Chen, Dehua Wang, Wen Qin, Siyu Fang, Ting Xu, Junjie Liu, Mi Tang, Zhengbang Wang
{"title":"A Fiber-Reinforced Poly(ionic liquid) Solid Electrolyte with Low Flammability and High Conductivity for High-Performance Lithium-Metal Batteries.","authors":"Junyan Tang, En Chen, Dehua Wang, Wen Qin, Siyu Fang, Ting Xu, Junjie Liu, Mi Tang, Zhengbang Wang","doi":"10.1021/acsami.4c23109","DOIUrl":null,"url":null,"abstract":"<p><p>Construction of polymer-based solid electrolytes with both low flammability and high ionic conductivity for lithium-metal batteries is still a great challenge but highly desirable. Herein, we report on a series of fiber-reinforced poly(ionic liquid) solid electrolytes prepared through an <i>in situ</i> copolymerization of ionic liquid monomers (IL) and poly(ethylene glycol) diacrylate (PEGDA) units with different ratios inside a polyacrylonitrile (PAN) fiber membrane. Such PAN/Poly-IL-PEGDA composite electrolytes demonstrate promising low flammability due to the excellent fire-resistant feature of the employed IL units. Moreover, it is remarkable to see that the optimized PAN/Poly-IL-PEGDA-1 electrolyte also exhibits highly dense structure with low thickness (31 μm), high ionic conductivity (0.32 mS cm<sup>-1</sup> at 30 °C), and wide electrochemical window (up to 4.8 V). As a result, both LiFePO<sub>4</sub>//Li and NCM//Li full cells with such an electrolyte exhibit both excellent rate capability and cycling stability. This study provides a simple strategy for preparing composite polymer electrolytes with low flammability and high conductivity for high-performance lithium-metal batteries.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c23109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Construction of polymer-based solid electrolytes with both low flammability and high ionic conductivity for lithium-metal batteries is still a great challenge but highly desirable. Herein, we report on a series of fiber-reinforced poly(ionic liquid) solid electrolytes prepared through an in situ copolymerization of ionic liquid monomers (IL) and poly(ethylene glycol) diacrylate (PEGDA) units with different ratios inside a polyacrylonitrile (PAN) fiber membrane. Such PAN/Poly-IL-PEGDA composite electrolytes demonstrate promising low flammability due to the excellent fire-resistant feature of the employed IL units. Moreover, it is remarkable to see that the optimized PAN/Poly-IL-PEGDA-1 electrolyte also exhibits highly dense structure with low thickness (31 μm), high ionic conductivity (0.32 mS cm-1 at 30 °C), and wide electrochemical window (up to 4.8 V). As a result, both LiFePO4//Li and NCM//Li full cells with such an electrolyte exhibit both excellent rate capability and cycling stability. This study provides a simple strategy for preparing composite polymer electrolytes with low flammability and high conductivity for high-performance lithium-metal batteries.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.