Paulina Bartosińska-Marzec, Bartłomiej Banaś, Clemens Kauffmann, Andreas Beier, Daniel Braun, Irene Ceccolini, Wiktor Koźmiński, Robert Konrat, Anna Zawadzka-Kazimierczuk
{"title":"A complete set of cross-correlated relaxation experiments for determining the protein backbone dihedral angles.","authors":"Paulina Bartosińska-Marzec, Bartłomiej Banaś, Clemens Kauffmann, Andreas Beier, Daniel Braun, Irene Ceccolini, Wiktor Koźmiński, Robert Konrat, Anna Zawadzka-Kazimierczuk","doi":"10.1007/s10858-025-00458-x","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation of structural propensities of proteins is essential for understanding how they function at the molecular level. NMR, offering atomic-scale information, is often the method of choice. One of the available techniques relies on the cross-correlated relaxation (CCR) effect, whose magnitude is related to local spatial conformation. Application of these methods is difficult if the protein under investigation exhibits high mobility, because NMR observables like CCR rates and chemical shifts present themselves as mere averages of an underlying ensemble distribution. Furthermore, relaxation observables are a convolution of structural and dynamical components. Despite these challenges, it is possible to infer the underlying structural ensemble by combining information from several CCR rates with a different geometrical dependence. In this paper, we present a set of eight CCR experiments tailored for proteins of a highly dynamic nature. Analyzed together, they yield a distribution of backbone dihedral angles for each residue of the protein. The experiments were validated on the folded protein ubiquitin using PDB-deposited NMR structures for comparison. Extraordinary peak separation, achieved by evolving four different chemical shifts, allows for the application of this method to intrinsically disordered proteins in future studies.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-025-00458-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of structural propensities of proteins is essential for understanding how they function at the molecular level. NMR, offering atomic-scale information, is often the method of choice. One of the available techniques relies on the cross-correlated relaxation (CCR) effect, whose magnitude is related to local spatial conformation. Application of these methods is difficult if the protein under investigation exhibits high mobility, because NMR observables like CCR rates and chemical shifts present themselves as mere averages of an underlying ensemble distribution. Furthermore, relaxation observables are a convolution of structural and dynamical components. Despite these challenges, it is possible to infer the underlying structural ensemble by combining information from several CCR rates with a different geometrical dependence. In this paper, we present a set of eight CCR experiments tailored for proteins of a highly dynamic nature. Analyzed together, they yield a distribution of backbone dihedral angles for each residue of the protein. The experiments were validated on the folded protein ubiquitin using PDB-deposited NMR structures for comparison. Extraordinary peak separation, achieved by evolving four different chemical shifts, allows for the application of this method to intrinsically disordered proteins in future studies.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.