Connecting tRNA Charging and Decoding through the Axis of Nucleotide Modifications at Position 37.

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Biology Pub Date : 2025-03-18 DOI:10.1016/j.jmb.2025.169095
Isao Masuda, Henri McGuigan, Sunita Maharjan, Yuka Yamaki, Ya-Ming Hou
{"title":"Connecting tRNA Charging and Decoding through the Axis of Nucleotide Modifications at Position 37.","authors":"Isao Masuda, Henri McGuigan, Sunita Maharjan, Yuka Yamaki, Ya-Ming Hou","doi":"10.1016/j.jmb.2025.169095","DOIUrl":null,"url":null,"abstract":"<p><p>Charging and decoding of tRNA are two steps in an elongation cycle of protein synthesis that embody the essence of the genetic code. In this embodiment, the amino acid charged to the 3'-end of a tRNA is delivered to the corresponding codon via the base pairing interaction between the anticodon of the tRNA and the codon in the ribosome decoding site. Previous work has shown that the nucleotide base at position 37 on the 3'-side of the anticodon can connect charging with decoding in one elongation cycle, providing an axis to coordinate these two steps in the making of a new peptide bond. However, as much of the previous work used tRNA transcripts as substrates, lacking any post-transcriptional modification, the role of the post-transcriptional modification at position 37 in this axis has remained unknown. Here we summarize recent work that has uncovered the modifications at position 37 that are important for both charging and decoding. We find that m<sup>1</sup>G37 and t<sup>6</sup>A37 are two such modifications. This review serves as a template for further discovery of tRNA modifications at position 37 that connect charging with decoding to provide the basis for better understanding of tRNA biology in human health and disease.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169095"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Charging and decoding of tRNA are two steps in an elongation cycle of protein synthesis that embody the essence of the genetic code. In this embodiment, the amino acid charged to the 3'-end of a tRNA is delivered to the corresponding codon via the base pairing interaction between the anticodon of the tRNA and the codon in the ribosome decoding site. Previous work has shown that the nucleotide base at position 37 on the 3'-side of the anticodon can connect charging with decoding in one elongation cycle, providing an axis to coordinate these two steps in the making of a new peptide bond. However, as much of the previous work used tRNA transcripts as substrates, lacking any post-transcriptional modification, the role of the post-transcriptional modification at position 37 in this axis has remained unknown. Here we summarize recent work that has uncovered the modifications at position 37 that are important for both charging and decoding. We find that m1G37 and t6A37 are two such modifications. This review serves as a template for further discovery of tRNA modifications at position 37 that connect charging with decoding to provide the basis for better understanding of tRNA biology in human health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
期刊最新文献
The 2.3 Å Structure of A21, a Protein Component of the Conserved Poxvirus Entry-Fusion Complex. Connecting tRNA Charging and Decoding through the Axis of Nucleotide Modifications at Position 37. Distinct roles of SARS-CoV-2 N protein and NFP in host cell response modulation. Impacts of D-aspartate on the aggregation kinetics and structural polymorphism of amyloid β peptide 1-42. Making Every Penny Count: Kinase Signaling Transduction, Copper Homeostasis, & Nutrient Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1