Paired Stimulation of Different Digits for 30 min Does Not Produce Long-Term Plastic Changes in the Human Cutaneomuscular Reflex.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-03-20 Print Date: 2025-03-01 DOI:10.1523/ENEURO.0103-24.2024
Maria Germann, Eldesta Nabila, Stuart N Baker
{"title":"Paired Stimulation of Different Digits for 30 min Does Not Produce Long-Term Plastic Changes in the Human Cutaneomuscular Reflex.","authors":"Maria Germann, Eldesta Nabila, Stuart N Baker","doi":"10.1523/ENEURO.0103-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cutaneomuscular reflexes (CMRs) can be recorded in the hand muscle of human subjects after stimulation of a digital nerve. We hypothesized that repeated synchronous stimulation of nerves from two digits may lead to long-term plastic changes in CMR, by the mechanisms of spike-timing-dependent plasticity (STDP). To test this idea, we conducted experiments in 27 healthy human volunteers. After baseline measurement of CMR, one of four 30-min-long stimulation conditions were tested; the CMR was then remeasured. The four conditions were simultaneous index finger and thumb stimulation; asynchronous index finger and thumb stimulation; thumb 5 ms before index finger stimulation; and thumb-only stimulation. Neither the early (E1) nor late excitatory (E2) components of the CMR showed consistent changes after any stimulation condition. The inhibitory (I1) component was slightly reduced in all cases. To understand why paired stimulation did not produce long-term changes, we conducted a further experiment. In this, we measured the CMR in response to simultaneous stimulation of index finger and thumb, compared with a prediction expected if the responses summed linearly. This revealed sublinear summation, possibly indicating partial response saturation after stimulation of only one digit. We argue such a pattern prevents paired stimuli from generating especially reliable and well-timed outputs relative to synaptic inputs in downstream neurons, which is required to produce plasticity by STDP.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"12 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0103-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cutaneomuscular reflexes (CMRs) can be recorded in the hand muscle of human subjects after stimulation of a digital nerve. We hypothesized that repeated synchronous stimulation of nerves from two digits may lead to long-term plastic changes in CMR, by the mechanisms of spike-timing-dependent plasticity (STDP). To test this idea, we conducted experiments in 27 healthy human volunteers. After baseline measurement of CMR, one of four 30-min-long stimulation conditions were tested; the CMR was then remeasured. The four conditions were simultaneous index finger and thumb stimulation; asynchronous index finger and thumb stimulation; thumb 5 ms before index finger stimulation; and thumb-only stimulation. Neither the early (E1) nor late excitatory (E2) components of the CMR showed consistent changes after any stimulation condition. The inhibitory (I1) component was slightly reduced in all cases. To understand why paired stimulation did not produce long-term changes, we conducted a further experiment. In this, we measured the CMR in response to simultaneous stimulation of index finger and thumb, compared with a prediction expected if the responses summed linearly. This revealed sublinear summation, possibly indicating partial response saturation after stimulation of only one digit. We argue such a pattern prevents paired stimuli from generating especially reliable and well-timed outputs relative to synaptic inputs in downstream neurons, which is required to produce plasticity by STDP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Aniracetam Ameliorates Attention Deficit Hyperactivity Disorder Behavior in Adolescent Mice. Paired Stimulation of Different Digits for 30 min Does Not Produce Long-Term Plastic Changes in the Human Cutaneomuscular Reflex. Macro- and Microstructural Alterations in the Midbrain in Early Psychosis Associates with Clinical Symptom Scores. Clinical efficacy of atomoxetine hydrochloride combined with electroencephalographic biofeedback in attention deficit hyperactivity disorder in children. Investigating the Speed and Accuracy of Human Movement Corrections to Visual, Somatosensory, and Tactile Perturbations: Evidence for Distinct Sensorimotor Processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1