Research on the histopathology of Larimichthys crocea affected by white gill disease and analysis of its bacterial and viral community characteristics.

IF 4.1 2区 农林科学 Q1 FISHERIES Fish & shellfish immunology Pub Date : 2025-03-18 DOI:10.1016/j.fsi.2025.110287
Wanliang Zhang, Lifang Wen, Zhenqi Xin, Gengshen Wang, Huajian Lin, Hao Wang, Bingqi Wei, Xiaojun Yan, Weifeng Wang, Baoying Guo
{"title":"Research on the histopathology of Larimichthys crocea affected by white gill disease and analysis of its bacterial and viral community characteristics.","authors":"Wanliang Zhang, Lifang Wen, Zhenqi Xin, Gengshen Wang, Huajian Lin, Hao Wang, Bingqi Wei, Xiaojun Yan, Weifeng Wang, Baoying Guo","doi":"10.1016/j.fsi.2025.110287","DOIUrl":null,"url":null,"abstract":"<p><p>White gill disease (WGD) is one of the major diseases affecting Larimichthys crocea, although its etiology remains unclear. To investigate the causes of WGD, this study selected WGD-affected Larimichthys crocea (WG) and healthy Larimichthys crocea (NH) from multiple aquaculture regions for pathological analysis and analysis of bacterial and viral community characteristics. The results indicated severe tissue damage and significant inflammatory responses, as evidenced by clinical manifestations and electron microscopy. Two bacterial species, Photobacterium damselae and Vibrio campbellii, were isolated from all lesion tissues. Additionally, 16S full-length sequencing results showed that Photobacterium damselae and Vibrio campbellii dominated in the tissues of Larimichthys crocea, with a combined relative abundance of approximately 90%. There were no significant differences in α-diversity and β-diversity between the NH group and WG group from the three aquaculture regions, and no significant biomarkers were identified. The diversity of DNA and RNA viruses did not show significant differences between the NH and WG groups, although both types of viruses exhibited notable synergistic and antagonistic relationships. Analyses from 16S full-length sequencing, metagenomics, and metatranscriptomics revealed that the related functional genes were primarily enriched in various metabolic pathways, including glycine biosynthesis, membrane transport, and energy metabolism. The metatranscriptomic analysis indicated that the expression levels of genes related to antibiotic resistance, biosynthesis, transport, and degradation processes were significantly downregulated in the WG group. Finally, through PCR, qPCR, and metagenomic sequencing, we were unable to detect iridovirus in Larimichthys crocea, further suggesting that the causes of WGD may differ across aquaculture regions compared to previous reports. This study indicates that the etiology of WGD may involve complex ecological and metabolic mechanisms, rather than being merely the result of a single pathogen infection. This research provides a comprehensive analysis of the microbial communities in WGD-affected Larimichthys crocea from multiple aquaculture regions for the first time, providing a theoretical basis for further elucidating the causes of WGD and developing preventive measures.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110287"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2025.110287","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

White gill disease (WGD) is one of the major diseases affecting Larimichthys crocea, although its etiology remains unclear. To investigate the causes of WGD, this study selected WGD-affected Larimichthys crocea (WG) and healthy Larimichthys crocea (NH) from multiple aquaculture regions for pathological analysis and analysis of bacterial and viral community characteristics. The results indicated severe tissue damage and significant inflammatory responses, as evidenced by clinical manifestations and electron microscopy. Two bacterial species, Photobacterium damselae and Vibrio campbellii, were isolated from all lesion tissues. Additionally, 16S full-length sequencing results showed that Photobacterium damselae and Vibrio campbellii dominated in the tissues of Larimichthys crocea, with a combined relative abundance of approximately 90%. There were no significant differences in α-diversity and β-diversity between the NH group and WG group from the three aquaculture regions, and no significant biomarkers were identified. The diversity of DNA and RNA viruses did not show significant differences between the NH and WG groups, although both types of viruses exhibited notable synergistic and antagonistic relationships. Analyses from 16S full-length sequencing, metagenomics, and metatranscriptomics revealed that the related functional genes were primarily enriched in various metabolic pathways, including glycine biosynthesis, membrane transport, and energy metabolism. The metatranscriptomic analysis indicated that the expression levels of genes related to antibiotic resistance, biosynthesis, transport, and degradation processes were significantly downregulated in the WG group. Finally, through PCR, qPCR, and metagenomic sequencing, we were unable to detect iridovirus in Larimichthys crocea, further suggesting that the causes of WGD may differ across aquaculture regions compared to previous reports. This study indicates that the etiology of WGD may involve complex ecological and metabolic mechanisms, rather than being merely the result of a single pathogen infection. This research provides a comprehensive analysis of the microbial communities in WGD-affected Larimichthys crocea from multiple aquaculture regions for the first time, providing a theoretical basis for further elucidating the causes of WGD and developing preventive measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fish & shellfish immunology
Fish & shellfish immunology 农林科学-海洋与淡水生物学
CiteScore
7.50
自引率
19.10%
发文量
750
审稿时长
68 days
期刊介绍: Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.
期刊最新文献
Effectiveness of a new cationic lipid-based nanovaccine for enhancing immersion vaccination against Flavobacterium oreochromis in red tilapia (Oreochromis sp.). The mytilin gene cluster: shedding light on the enigmatic origin of mussel dispensable genes. Transcriptome analysis reveals the immune responses of leopard coral grouper to nervous necrosis virus infection. Effects of dietary taurine on growth, taurine metabolism and Vibrio crassostreae resistance in juvenile clam Ruditapes philippinarum. Research on the histopathology of Larimichthys crocea affected by white gill disease and analysis of its bacterial and viral community characteristics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1