{"title":"Predicting MHC-I ligands across alleles and species: how far can we go?","authors":"Daniel M Tadros, Julien Racle, David Gfeller","doi":"10.1186/s13073-025-01450-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CD8<sup>+</sup> T-cell activation is initiated by the recognition of epitopes presented on class I major histocompatibility complex (MHC-I) molecules. Identifying such epitopes is useful for molecular understanding of cellular immune responses and can guide the development of personalized vaccines for various diseases including cancer. For a few hundred common human and mouse MHC-I alleles, large datasets of ligands are available and machine learning MHC-I ligand predictors trained on such data reach high prediction accuracy. However, for the vast majority of other MHC-I alleles, no ligand is known.</p><p><strong>Methods: </strong>We capitalize on an expanded architecture of our MHC-I ligand predictor (MixMHCpred3.0) to systematically assess the extent to which predictions of MHC-I ligands can be applied to MHC-I alleles that currently lack known ligand data.</p><p><strong>Results: </strong>Our results reveal high prediction accuracy for most MHC-I alleles in human and in laboratory mouse strains, but significantly lower accuracy in other species. Our work further outlines some of the molecular determinants of MHC-I ligand prediction accuracy across alleles and species. Robust benchmarking on external data shows that our MHC-I ligand predictor demonstrates competitive performance relative to other state-of-the-art MHC-I ligand predictors and can be used for CD8<sup>+</sup> T-cell epitope predictions.</p><p><strong>Conclusions: </strong>Our work provides a valuable tool for predicting antigen presentation across all human and mouse MHC-I alleles. MixMHCpred3.0 tool is available at https://github.com/GfellerLab/MixMHCpred .</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"25"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01450-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: CD8+ T-cell activation is initiated by the recognition of epitopes presented on class I major histocompatibility complex (MHC-I) molecules. Identifying such epitopes is useful for molecular understanding of cellular immune responses and can guide the development of personalized vaccines for various diseases including cancer. For a few hundred common human and mouse MHC-I alleles, large datasets of ligands are available and machine learning MHC-I ligand predictors trained on such data reach high prediction accuracy. However, for the vast majority of other MHC-I alleles, no ligand is known.
Methods: We capitalize on an expanded architecture of our MHC-I ligand predictor (MixMHCpred3.0) to systematically assess the extent to which predictions of MHC-I ligands can be applied to MHC-I alleles that currently lack known ligand data.
Results: Our results reveal high prediction accuracy for most MHC-I alleles in human and in laboratory mouse strains, but significantly lower accuracy in other species. Our work further outlines some of the molecular determinants of MHC-I ligand prediction accuracy across alleles and species. Robust benchmarking on external data shows that our MHC-I ligand predictor demonstrates competitive performance relative to other state-of-the-art MHC-I ligand predictors and can be used for CD8+ T-cell epitope predictions.
Conclusions: Our work provides a valuable tool for predicting antigen presentation across all human and mouse MHC-I alleles. MixMHCpred3.0 tool is available at https://github.com/GfellerLab/MixMHCpred .
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.