Influence of zirconium dioxide (ZrO2) and magnetite (Fe3O4) additions on the structural, electrical, and biological properties of Bioglass® for metal implant coatings.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in Bioengineering and Biotechnology Pub Date : 2025-03-06 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1537856
Imen Hammami, Manuel Pedro Fernandes Graça, Sílvia Rodrigues Gavinho, Joana Soares Regadas, Suresh Kumar Jakka, Ana Sofia Pádua, Jorge Carvalho Silva, Isabel Sá-Nogueira, João Paulo Borges
{"title":"Influence of zirconium dioxide (ZrO<sub>2</sub>) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) additions on the structural, electrical, and biological properties of Bioglass<sup>®</sup> for metal implant coatings.","authors":"Imen Hammami, Manuel Pedro Fernandes Graça, Sílvia Rodrigues Gavinho, Joana Soares Regadas, Suresh Kumar Jakka, Ana Sofia Pádua, Jorge Carvalho Silva, Isabel Sá-Nogueira, João Paulo Borges","doi":"10.3389/fbioe.2025.1537856","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The growing need for durable implants, driven by aging populations and increased trauma cases, highlights challenges such as limited osseointegration and biofilm formation. 45S5 Bioglass<sup>®</sup> has shown promise due to its bioactivity, antimicrobial properties, and ability to enhance osseointegration through electrical polarization. This study investigates the effects of incorporating different concentrations of ZrO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub> into 45S5 Bioglass<sup>®</sup> to enhance its electrical and biological properties.</p><p><strong>Methods: </strong>Raman analysis was used to evaluate how these oxides influenced the amount of non-bridging oxygens (NBOs) and glass network connectivity. Electrical characterization was performed using impedance spectroscopy to measure conductivity and ion mobility. Antibacterial activity was assessed using the agar diffusion method, and bioactivity was evaluated through simulated body fluid (SBF) immersion tests.</p><p><strong>Results: </strong>The results revealed that bioglasses containing ZrO<sub>2</sub> exhibited higher NBO content compared to Fe<sub>3</sub>O<sub>4</sub>, leading to improved electrical and biological properties. ZrO<sub>2</sub>, particularly at 2 mol%, significantly enhanced conductivity, antibacterial activity, and bioactivity. In contrast, Fe<sub>3</sub>O<sub>4</sub> reduced both antibacterial activity and bioactivity.</p><p><strong>Conclusion: </strong>The findings demonstrate that ZrO<sub>2</sub> addition improves the electrical and biological performance of 45S5 Bioglass<sup>®</sup>, making it a promising candidate for durable implants. Fe<sub>3</sub>O<sub>4</sub>, however, showed limited benefits.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1537856"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1537856","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The growing need for durable implants, driven by aging populations and increased trauma cases, highlights challenges such as limited osseointegration and biofilm formation. 45S5 Bioglass® has shown promise due to its bioactivity, antimicrobial properties, and ability to enhance osseointegration through electrical polarization. This study investigates the effects of incorporating different concentrations of ZrO2 and Fe3O4 into 45S5 Bioglass® to enhance its electrical and biological properties.

Methods: Raman analysis was used to evaluate how these oxides influenced the amount of non-bridging oxygens (NBOs) and glass network connectivity. Electrical characterization was performed using impedance spectroscopy to measure conductivity and ion mobility. Antibacterial activity was assessed using the agar diffusion method, and bioactivity was evaluated through simulated body fluid (SBF) immersion tests.

Results: The results revealed that bioglasses containing ZrO2 exhibited higher NBO content compared to Fe3O4, leading to improved electrical and biological properties. ZrO2, particularly at 2 mol%, significantly enhanced conductivity, antibacterial activity, and bioactivity. In contrast, Fe3O4 reduced both antibacterial activity and bioactivity.

Conclusion: The findings demonstrate that ZrO2 addition improves the electrical and biological performance of 45S5 Bioglass®, making it a promising candidate for durable implants. Fe3O4, however, showed limited benefits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
期刊最新文献
Electrospinning in promoting chronic wound healing: materials, process, and applications. Evaluating femoral head collapse risk post-fixation removal: a finite element analysis. Influence of zirconium dioxide (ZrO2) and magnetite (Fe3O4) additions on the structural, electrical, and biological properties of Bioglass® for metal implant coatings. BMP2 peptide-modified polycaprolactone-collagen nanosheets for periodontal tissue regeneration. Case report: Free autologous costal cartilage transplantation for osteochondral lesions of the talus: three cases with 2-5 years follow-up.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1