Enhanced Redundant Residue Number System Codes for Reliable Diffusive Molecular Communication.

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2025-03-20 DOI:10.1109/TNB.2025.3553183
Liwei Mu
{"title":"Enhanced Redundant Residue Number System Codes for Reliable Diffusive Molecular Communication.","authors":"Liwei Mu","doi":"10.1109/TNB.2025.3553183","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces an improved redundant residue number system (RRNS) encoding method to enhance the reliability of information transmission in diffusive molecular communication (DMC). In addressing the 2-1 mapping issue in RRNS encoding, we propose a simplified low-mapping solution that effectively avoids the 2-1 mapping problem, thereby simplifying the decoding process. Leveraging the superior performance of the low-mapping algorithm, we further developed a direct decision algorithm that further simplifies the decoding algorithm by omitting the traditional minimum distance decision-making steps. Furthermore, this study delves into the impact of modulus selection on RRNS decoding performance and provides guidelines for optimizing code construction. Through simulation experiments on DMC channels, we have validated the effectiveness of the proposed RRNS encoding method, especially when employing binary concentration shift keying (BCSK) modulation and considering intersymbol interference (ISI). The simulation results show that the proposed encoding method not only significantly reduces the bit error rate (BER) but also fully meets the requirements of DMC systems, offering a promising new direction for the development of molecular communication technology. With these improvements, our method not only enhances the reliability of information transmission in DMC systems but also lays a solid foundation for future research and applications in molecular communication technology.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2025.3553183","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an improved redundant residue number system (RRNS) encoding method to enhance the reliability of information transmission in diffusive molecular communication (DMC). In addressing the 2-1 mapping issue in RRNS encoding, we propose a simplified low-mapping solution that effectively avoids the 2-1 mapping problem, thereby simplifying the decoding process. Leveraging the superior performance of the low-mapping algorithm, we further developed a direct decision algorithm that further simplifies the decoding algorithm by omitting the traditional minimum distance decision-making steps. Furthermore, this study delves into the impact of modulus selection on RRNS decoding performance and provides guidelines for optimizing code construction. Through simulation experiments on DMC channels, we have validated the effectiveness of the proposed RRNS encoding method, especially when employing binary concentration shift keying (BCSK) modulation and considering intersymbol interference (ISI). The simulation results show that the proposed encoding method not only significantly reduces the bit error rate (BER) but also fully meets the requirements of DMC systems, offering a promising new direction for the development of molecular communication technology. With these improvements, our method not only enhances the reliability of information transmission in DMC systems but also lays a solid foundation for future research and applications in molecular communication technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Carbon Nitride-Supported Copper Oxide for Non-Enzymatic Glucose Sensor: A Multi-Platform Approach Utilizing Electrochemical, Field Effect Transistor and Microcontroller-based IoT Systems. Enhanced Redundant Residue Number System Codes for Reliable Diffusive Molecular Communication. A High Sensitive Nanomaterial Coated Side Polished Fiber Sensor for Detection of Cardiac Troponin I Antibody. Synthesis of heteroatom doped polymer coated nanomaterials for slow and controlled drug release in the physiological microenvironment. Spatial Pattern Switching Strategy: a Successful Application in the Bimolecular Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1