Knee flexion range of motion does not influence muscle hypertrophy of the quadriceps femoris during leg press training in resistance-trained individuals.
Stian Larsen, Milo Wolf, Brad J Schoenfeld, Nordis Ø Sandberg, Andrea B Fredriksen, Benjamin S Kristiansen, Roland van den Tillaar, Paul A Swinton, Hallvard N Falch
{"title":"Knee flexion range of motion does not influence muscle hypertrophy of the quadriceps femoris during leg press training in resistance-trained individuals.","authors":"Stian Larsen, Milo Wolf, Brad J Schoenfeld, Nordis Ø Sandberg, Andrea B Fredriksen, Benjamin S Kristiansen, Roland van den Tillaar, Paul A Swinton, Hallvard N Falch","doi":"10.1080/02640414.2025.2481534","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect of knee flexion range of motion (ROM) during the leg press exercise on quadriceps femoris muscle hypertrophy in resistance-trained individuals. Twenty-three participants (training age: 7.2 ± 3.5 years) completed a within-participant design, performing four sets of unilateral leg presses to momentary failure twice weekly for 8 weeks. In one leg, the knee flexion range of motion (ROM) was fixed at approximately 5-100°, while for the other leg, participants used their maximum individualized ROM (5-154 ± 7.8°). Quadriceps muscle thickness was assessed via B-mode ultrasonography in the proximal, central, and distal regions of the mid- and lateral thighs. Bayesian analyses were conducted to quantify treatment effects and provide inferential estimates using credible intervals and Bayes Factors (BF). Univariate and multivariate analyses indicated 'moderate' (BF = 0.14 to 0.22) and 'extreme' (BF < 0.01) evidence in support of the null hypothesis, respectively. Within-condition analyses revealed small-to-medium hypertrophic adaptation in both conditions, with absolute increases ranging from 1.08 mm to 1.91 mm. These findings suggest that both knee flexion ROMs are similarly effective for promoting quadriceps femoris muscle hypertrophy over a relatively short training-period in resistance-trained individuals.</p>","PeriodicalId":17066,"journal":{"name":"Journal of Sports Sciences","volume":" ","pages":"1-9"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02640414.2025.2481534","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of knee flexion range of motion (ROM) during the leg press exercise on quadriceps femoris muscle hypertrophy in resistance-trained individuals. Twenty-three participants (training age: 7.2 ± 3.5 years) completed a within-participant design, performing four sets of unilateral leg presses to momentary failure twice weekly for 8 weeks. In one leg, the knee flexion range of motion (ROM) was fixed at approximately 5-100°, while for the other leg, participants used their maximum individualized ROM (5-154 ± 7.8°). Quadriceps muscle thickness was assessed via B-mode ultrasonography in the proximal, central, and distal regions of the mid- and lateral thighs. Bayesian analyses were conducted to quantify treatment effects and provide inferential estimates using credible intervals and Bayes Factors (BF). Univariate and multivariate analyses indicated 'moderate' (BF = 0.14 to 0.22) and 'extreme' (BF < 0.01) evidence in support of the null hypothesis, respectively. Within-condition analyses revealed small-to-medium hypertrophic adaptation in both conditions, with absolute increases ranging from 1.08 mm to 1.91 mm. These findings suggest that both knee flexion ROMs are similarly effective for promoting quadriceps femoris muscle hypertrophy over a relatively short training-period in resistance-trained individuals.
期刊介绍:
The Journal of Sports Sciences has an international reputation for publishing articles of a high standard and is both Medline and Clarivate Analytics-listed. It publishes research on various aspects of the sports and exercise sciences, including anatomy, biochemistry, biomechanics, performance analysis, physiology, psychology, sports medicine and health, as well as coaching and talent identification, kinanthropometry and other interdisciplinary perspectives.
The emphasis of the Journal is on the human sciences, broadly defined and applied to sport and exercise. Besides experimental work in human responses to exercise, the subjects covered will include human responses to technologies such as the design of sports equipment and playing facilities, research in training, selection, performance prediction or modification, and stress reduction or manifestation. Manuscripts considered for publication include those dealing with original investigations of exercise, validation of technological innovations in sport or comprehensive reviews of topics relevant to the scientific study of sport.