Chang Cai, Xiao Xiao, Qiye Wen, Zifeng Luo, Song Wang
{"title":"The research progress of label-free optical imaging technology in intraoperative real-time navigation of parathyroid glands.","authors":"Chang Cai, Xiao Xiao, Qiye Wen, Zifeng Luo, Song Wang","doi":"10.1007/s10103-025-04418-7","DOIUrl":null,"url":null,"abstract":"<p><p>Intraoperative misidentification or vascular injury to the parathyroid glands can lead to hypoparathyroidism and hypocalcemia, resulting in serious postoperative complications. Therefore, functional localization of the parathyroid glands during thyroid (parathyroid) surgery is a key focus and challenge in thyroid surgery. The current clinical prospects of various optical imaging technologies for intraoperative localization, identification, and protection of parathyroid glands varies. However, \"Label-free optical imaging technology\" is increasingly favored by surgeons due to its simplicity, efficiency, safety, real-time capability, and non-invasiveness. This manuscript focuses on the relatively well-researched near-infrared autofluorescence (NIRAF) and NIRAF-combined studies including those integrating laser speckle imaging, artificial intelligence(AI) optimization, hardware integration, and optical path improvements. It also briefly introduces promising technologies, including Laser-Induced Fluorescence (LIF), Hyperspectral Imaging (HSI), Fluorescence Lifetime Imaging (FLIm), Laser-Induced Breakdown Spectroscopy (LIBS), Optical Coherence Tomography (OCT), and Dynamic Optical Contrast Imaging (DOCI). While these technologies are still in early stages with limited clinical application and standardization, current research highlights their potential for improving intraoperative parathyroid identification. Future studies should focus on refining these methods for broader clinical use.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"40 1","pages":"154"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-025-04418-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intraoperative misidentification or vascular injury to the parathyroid glands can lead to hypoparathyroidism and hypocalcemia, resulting in serious postoperative complications. Therefore, functional localization of the parathyroid glands during thyroid (parathyroid) surgery is a key focus and challenge in thyroid surgery. The current clinical prospects of various optical imaging technologies for intraoperative localization, identification, and protection of parathyroid glands varies. However, "Label-free optical imaging technology" is increasingly favored by surgeons due to its simplicity, efficiency, safety, real-time capability, and non-invasiveness. This manuscript focuses on the relatively well-researched near-infrared autofluorescence (NIRAF) and NIRAF-combined studies including those integrating laser speckle imaging, artificial intelligence(AI) optimization, hardware integration, and optical path improvements. It also briefly introduces promising technologies, including Laser-Induced Fluorescence (LIF), Hyperspectral Imaging (HSI), Fluorescence Lifetime Imaging (FLIm), Laser-Induced Breakdown Spectroscopy (LIBS), Optical Coherence Tomography (OCT), and Dynamic Optical Contrast Imaging (DOCI). While these technologies are still in early stages with limited clinical application and standardization, current research highlights their potential for improving intraoperative parathyroid identification. Future studies should focus on refining these methods for broader clinical use.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.