{"title":"Elongation factor Tu promotes the onset of periodontitis through mediating bacteria adhesion.","authors":"Leyi Xiao, Yingying Pu, Yu Cui, Chen Chen, Qi Xiao, Yulan Wang, Yan Wei, Mengge Feng, Tiange Zhang, Shanyi Yang, Jingxuan Zhou, Yueqi Ni, Jinglun Zhang, Hebin Liao, Jingwen Wu, Yufeng Zhang","doi":"10.1038/s41522-025-00680-3","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis, a leading cause of adult tooth loss and linked to various systemic diseases, is promoted by subgingival plaque biofilms, with Streptococci as early colonizers responsible for surface adhesion. Current studies of Streptococci adhesion have focused on bacteria surface adhesins with acquired protein membranes on the tooth surface, yet no critical proteins with implications for the overall early adhesion of subgingival plaque have been reported. Here, we identified that the \"Barrel-like adhesion domain\" of streptococcal EF-Tu facilitates cell-surface attachment, promotes biofilm formation, and contributes to the development of periodontitis. In the adherent state, EF-Tu is transported from the cytoplasm to the cell surface through membrane vesicles. Furthermore, we first found that simeprevir, an FDA-approved drug, binds to the \"Barrel-like adhesion domain\" of EF-Tu and effectively inhibits the protein's surface adhesion and secretory pathways. Simeprevir showed the ability to inhibit dental plaque formation and provided prevention and treatments for periodontitis.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"47"},"PeriodicalIF":7.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00680-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis, a leading cause of adult tooth loss and linked to various systemic diseases, is promoted by subgingival plaque biofilms, with Streptococci as early colonizers responsible for surface adhesion. Current studies of Streptococci adhesion have focused on bacteria surface adhesins with acquired protein membranes on the tooth surface, yet no critical proteins with implications for the overall early adhesion of subgingival plaque have been reported. Here, we identified that the "Barrel-like adhesion domain" of streptococcal EF-Tu facilitates cell-surface attachment, promotes biofilm formation, and contributes to the development of periodontitis. In the adherent state, EF-Tu is transported from the cytoplasm to the cell surface through membrane vesicles. Furthermore, we first found that simeprevir, an FDA-approved drug, binds to the "Barrel-like adhesion domain" of EF-Tu and effectively inhibits the protein's surface adhesion and secretory pathways. Simeprevir showed the ability to inhibit dental plaque formation and provided prevention and treatments for periodontitis.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.