Alina Catalina Palcau, Claudio Pulito, Valentina De Pascale, Luca Casadei, Mariacristina Valerio, Andrea Sacconi, Valeria Canu, Daniela Rutigliano, Sara Donzelli, Federica Lo Sardo, Francesca Romana Auciello, Fulvia Pimpinelli, Paola Muti, Claudio Botti, Sabrina Strano, Giovanni Blandino
{"title":"CircPVT1 weakens miR-33a-5p unleashing the c-MYC/GLS1 metabolic axis in breast cancer.","authors":"Alina Catalina Palcau, Claudio Pulito, Valentina De Pascale, Luca Casadei, Mariacristina Valerio, Andrea Sacconi, Valeria Canu, Daniela Rutigliano, Sara Donzelli, Federica Lo Sardo, Francesca Romana Auciello, Fulvia Pimpinelli, Paola Muti, Claudio Botti, Sabrina Strano, Giovanni Blandino","doi":"10.1186/s13046-025-03355-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Altered metabolism is one of the cancer hallmarks. The role of circRNAs in cancer metabolism is poorly studied. Specifically, the impact of circPVT1, a well-known oncogenic circRNA on triple negative breast cancer metabolism is mechanistically underexplored.</p><p><strong>Methods: </strong>The clinical significance of circPVT1 expression levels was assessed in human breast cancer samples using digital PCR and the cancer genome atlas (TCGA) dataset. The oncogenic activity of circPVT1 was assessed in TNBC cell lines and in MCF-10 A breast cell line by either ectopic expression or depletion of circPVT1 molecule. CircPVT1 mediated metabolic perturbation was assessed by 1 H-NMR spectroscopy metabolic profiling. The binding of circPVT1 to miR-33a-5p and c-Myc recruitment onto the Glutaminase gene promoter were assessed by RNA immunoprecipitation and chromatin immunoprecipitation assays, respectively. The circPVT1/miR-33a-5p/Myc/GLS1 axis was functionally validated in breast cancer patients derived organoids. The viability of 2D and PDO cell models was assessed by ATP light assay and Opera Phenix plus high content screening.</p><p><strong>Results: </strong>We initially found that the expression of circPVT1 was significantly higher in tumoral tissues than in non-tumoral breast tissues. Basal like breast cancer patients with higher levels of circPVT1 exhibited shorter disease-free survival compared to those with lower expression. CircPVT1 ectopic expression rendered fully transformed MCF-10 A immortalized breast cells and increased tumorigenicity of TNBC cell lines. Depletion of endogenous circPVT1 reduced tumorigenicity of SUM-159PT and MDA-MB-468 cells. 1 H-NMR spectroscopy metabolic profiling of circPVT1 depleted breast cancer cell lines revealed reduced glycolysis and glutaminolitic fluxes. Conversely, MCF-10 A cells stably overexpressing circPVT1 exhibited increased glutaminolysis. Mechanistically, circPVT1 sponges miR-33a-5p, a well know metabolic microRNA, which in turn releases c-MYC activity promoting transcriptionally glutaminase. This activity facilitates the conversion of glutamine to glutamate. CircPVT1 depletion synergizes with GLS1 inhibitors BPTES or CB839 to reduce cell viability of breast cancer cell lines and breast cancer-derived organoids.</p><p><strong>Conclusions: </strong>In aggregate, our findings unveil the circPVT1/miR-33a-5p/Myc/GLS1 axis as a pro-tumorigenic metabolic event sustaining breast cancer transformation with potential therapeutic implications.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"100"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03355-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Altered metabolism is one of the cancer hallmarks. The role of circRNAs in cancer metabolism is poorly studied. Specifically, the impact of circPVT1, a well-known oncogenic circRNA on triple negative breast cancer metabolism is mechanistically underexplored.
Methods: The clinical significance of circPVT1 expression levels was assessed in human breast cancer samples using digital PCR and the cancer genome atlas (TCGA) dataset. The oncogenic activity of circPVT1 was assessed in TNBC cell lines and in MCF-10 A breast cell line by either ectopic expression or depletion of circPVT1 molecule. CircPVT1 mediated metabolic perturbation was assessed by 1 H-NMR spectroscopy metabolic profiling. The binding of circPVT1 to miR-33a-5p and c-Myc recruitment onto the Glutaminase gene promoter were assessed by RNA immunoprecipitation and chromatin immunoprecipitation assays, respectively. The circPVT1/miR-33a-5p/Myc/GLS1 axis was functionally validated in breast cancer patients derived organoids. The viability of 2D and PDO cell models was assessed by ATP light assay and Opera Phenix plus high content screening.
Results: We initially found that the expression of circPVT1 was significantly higher in tumoral tissues than in non-tumoral breast tissues. Basal like breast cancer patients with higher levels of circPVT1 exhibited shorter disease-free survival compared to those with lower expression. CircPVT1 ectopic expression rendered fully transformed MCF-10 A immortalized breast cells and increased tumorigenicity of TNBC cell lines. Depletion of endogenous circPVT1 reduced tumorigenicity of SUM-159PT and MDA-MB-468 cells. 1 H-NMR spectroscopy metabolic profiling of circPVT1 depleted breast cancer cell lines revealed reduced glycolysis and glutaminolitic fluxes. Conversely, MCF-10 A cells stably overexpressing circPVT1 exhibited increased glutaminolysis. Mechanistically, circPVT1 sponges miR-33a-5p, a well know metabolic microRNA, which in turn releases c-MYC activity promoting transcriptionally glutaminase. This activity facilitates the conversion of glutamine to glutamate. CircPVT1 depletion synergizes with GLS1 inhibitors BPTES or CB839 to reduce cell viability of breast cancer cell lines and breast cancer-derived organoids.
Conclusions: In aggregate, our findings unveil the circPVT1/miR-33a-5p/Myc/GLS1 axis as a pro-tumorigenic metabolic event sustaining breast cancer transformation with potential therapeutic implications.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.